首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for situ preparing a hybrid material consisting of silica nanoparticles (SiO2) attached onto the surface of functionalized graphene nanoplatelets (f-GNPs) is proposed. Firstly, polyacrylic acid (PAA) was grafted to the surface of f-GNPs to increase reacting sites, and then 3-aminopropyltriethoxysilane (APTES) KH550 reacted with abovementioned product PAA-GNPs to obtain siloxane-GNPs, thus providing reaction sites for the growth of SiO2 on the surface of GNPs. Finally, the SiO2/graphene nanoplatelets (SiO2/GNPs) hybrid material is obtained through introducing siloxane-GNPs into a solution of tetraethyl orthosilicate, ammonia and ethanol for hours'' reaction. The results from Fourier transform infrared spectroscopy (FTIR) showed that SiO2 particles have situ grown on the surface of GNPs through chemical bonds as Si-O-Si. And the nanostructure of hybrid materials was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All the images indicated that SiO2 particles with similar sizes were grafted on the surface of graphene nanoplatelets successfully. And TEM images also showed the whole growth process of SiO2 particles on the surface of graphene as time grows. Moreover, TGA traces suggested the SiO2/GNPs hybrid material had stable thermal stability. And at 900°C, the residual weight fraction of polymer on siloxane-GNPs was about 94.2% and that of SiO2 particles on hybrid materials was about 75.0%. However, the result of Raman spectroscopy showed that carbon atoms of graphene nanoplatelets became much more disordered, due to the destroyed carbon domains during the process of chemical drafting. Through orthogonal experiments, hybrid materials with various sizes of SiO2 particles were prepared, thus achieving the particle sizes controllable. And the factors’ level of significance is as follows: the quantity of ammonia > the quantity of tetraethyl orthosilicate (TEOS) > the reaction time.  相似文献   

2.
A series of polyimide/silica (PI/SiO2) hybrid foams were prepared by the sol–gel process. Aminopropyltriethoxysilane was used as the coupling agent to enhance the compatibility between PI matrix and SiO2. Fourier transform infrared spectroscopy and scanning electron microscopy were used to analyze the chemical structure and cellular structure of PI/SiO2 hybrid foams. The results indicated that the three‐dimensional network of Si O Si was formed in the hybrid foams, and the hybrid foam presented the uniform cellular structure when the SiO2 content was less than 6 wt%. The thermal stability, dynamic mechanical property, and dielectric property of PI/SiO2 hybrid foams were investigated by dynamic mechanical analysis, thermogravimetric analysis, and vector network analyzer, respectively. The introduction of SiO2 improved the thermal stability and increased the storage modulus and glass‐transition temperature. The hybrid foams showed higher dielectric constants compared with the neat PI foam. The erosion resistance to atomic oxygen (AO) of PI/SiO2 hybrid foams was also evaluated in a ground‐based AO simulator. The surface morphology and chemical structure of PI/SiO2 hybrid foams before and after AO exposure were investigated by scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. The results revealed that the inorganic SiO2 protective layers were formed on the surface of PI/SiO2 hybrid foams after AO exposure, which could effectively improve the AO erosion resistance of PI/SiO2 hybrid foams. POLYM. COMPOS., 36:713–721, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
A tough hybrid hydrogel has been developed by dual in situ sol–gel reaction of γ-ethacryloxypropyltrimethoxysilane (MPTMS) and tetrabutyl titanate, as well as in situ radical polymerization of acrylamide (AM) and MPTMS. In this hydrogel, covalently bonded SiO2 and TiO2 nanoparticles were used as inorganic filler and multifunctional crosslinker. Nano-TiO2 was bonded onto the surface of SiO2 by forming Ti O Si bonds and SiO2 bonded with polymer chains by the formation of C O Si bonds, which were confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy technology. Transmission electron microscopy images revealed that SiO2 and TiO2 tended to construct a distinct rod-like structure in poly(AM) matrix. This specific microstructure enhanced the mechanical properties of hydrogel. The compressive stress of the gel reached up to 9.49 MPa, and the compressive fracture energy was as high as 5307.73 J m−2. This strategy provided a probable method for the preparation of tough soft materials with potential applications in chemical machinery and actuators. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47742.  相似文献   

4.
A series of sol–gel‐derived organic–inorganic hybrid materials that comprise organic poly(methyl methacrylate) (PMMA) and inorganic silica (SiO2) was successfully prepared using aniline as an organic base catalyst to catalyze the sol–gel reactions of tetraethylorthosilicate (TEOS). Aniline was adopted not only as a catalyst but also as a dispersing agent during the preparation of the hybrid materials. The as‐prepared hybrid materials were then characterized using transmission electron microscopy, SEM/energy dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy. The characteristic temperatures (including Td and Tg) of the hybrid materials slightly exceeded those of neat PMMA, as revealed from thermogravimetric analysis and differential scanning calorimetry evaluations. Studies of the protection against corrosion demonstrated that the hybrid coatings all improved the protection performance on cold‐rolled steel coupons relative to that of neat PMMA coatings, according to measurements of electrochemical corrosion parameters. Additionally, incorporating silica particles into the polymer may effectively reduce the gas permeability of the polymer membrane. Reducing the size of silica particles (at the same silica feeding) further improved the gas barrier property. Optical clarity studies indicated that introducing silica particles into the PMMA matrix may slightly reduce the optical clarity of the films/membranes, as determined by UV‐visible transmission spectroscopy. The contact angle of H2O of the hybrid films increased with the amount of aniline. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

5.
A silicon-based aromatic polyimide (PI) containing pendent aryl rings was synthesized by solution polycondensation of a silicon-containing diamine with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride. Its nano-hybrids with different colloidal SiO2 concentrations were synthesized by in situ polymerization. The reactions were carried out in presence of 3-aminopropyltriethoxysilane as a coupling agent. The inclusion of the coupling agent in the polymer chain and its co-condensation with SiO2 nanoparticles afforded a silica network that was interconnected chemically with the PI matrix. The chemical structure of the hybrid materials was analyzed by Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy. The morphology of the hybrid films and the surface roughness were characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results indicated that nanometer-scale inorganic particles were homogeneously dispersed throughout the PI matrix with 50–70 nm size range. The best results and favorable miscibility between polymer and silica phases in the nano-hybrids were obtained when up to 40 wt% nanoparticles were introduced into the backbone of PI matrix.  相似文献   

6.
Polysilsesquioxanes (PSQ)-based core–shell fluorinated polyacrylate/silica hybrid latex coatings were synthesized with PSQ latex particles as the seeds, and methyl methacrylate, butyl acrylate, 3-(trimethoxysilyl) propyl methacrylate (MPS)-modified SiO2 nanoparticles (NPs), 1H,1H,2H,2H-perfluorooctyl methacrylate (PFOMA) as the shell monomers by emulsifier-free miniemulsion polymerization. The results of Fourier transform IR spectroscopy, transmission electron microscopy, and dynamic light scattering suggested the obtained hybrid particles emerged with trilayer core–shell pattern. Contact angle analysis, x-ray photoelectron spectroscopy, and atom force microscopy results indicated that the hybrid film containing SiO2 NPs showed higher hydrophobicity, lower surface free energy and water absorption, in comparison with the control system (without SiO2 NPs). Compared with the control system, the hybrid latex film containing SiO2 NPs in the fluorinated polyacrylate shell layer showed the higher content of fluorine atoms and a rougher morphology on the film surface. Additionally, thermogravimetric analysis demonstrated the enhanced thermostability of PSQ-based nanosilica composite fluorinated polyacrylate latex film.  相似文献   

7.
Graphene–carbon nanotube hybrid materials were successfully prepared through the ππ interaction without using any chemical reagent. We found that the ratio between carbon nanotube and graphene had critical influences on the state in aqueous solution and morphology of hybrid materials. Field emission scanning electron microscope and transmission electron microscope analysis confirmed that graphene nanosheets wrap around individual carbon nanotubes and form a homogeneous three-dimensional hybrid nanostructure. When applied as an anode material in lithium ion batteries, graphene–carbon nanotube hybrid materials demonstrated a high reversible lithium storage capacity, a high Coulombic efficiency and an excellent cyclability.  相似文献   

8.
A new type of inorganic‐polymer hybrid materials of epoxy/silica‐titania had been prepared by incorporating grafted epoxy, which had been synthesized by epoxy and tetraethoxysilane (TEOS), with highly reactive TEOS and tetrabutyltitanate (TBT) by using the in situ sol–gel process. The grafted epoxy was confirmed by Fourier transform infrared spectroscopy (FT‐IR) and 1H‐NMR spectroscopic technique. Results of FT‐IR spectroscopy and atomic force microscopy (AFM) demonstrated that epoxy chains have been covalently bonded to the surface of the SiO2‐TiO2 particles. The particles size of SiO2‐TiO2 are about 20–50 nm, as characterized by AFM. The experimental results showed that the glass‐transition temperatures and the modulus of the modified systems were higher than that of the unmodified system, and the impact strength was enhanced by two to three times compared with that of the neat epoxy. The morphological structure of impact fracture surface and the surface of the hybrid materials were observed by scanning electron microscopy and AFM, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1075–1081, 2006  相似文献   

9.
The purpose of this work was to improve the properties of the starch/poly(vinyl alcohol) (PVA) films with nano silicon dioxide (nano SiO2). Starch/PVA/nano‐SiO2 biodegradable blend films were prepared by a solution casting method. The characteristics of the films were assessed by Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray photoelectron spectroscopy (XPS). The results obtained in this study indicated that the nano‐SiO2 particles were dispersed evenly within the starch/PVA coating and an intermolecular hydrogen bond and a strong chemical bond C? O? Si were formed in the nano‐SiO2 and starch/PVA. That the blending of starch, PVA and nano‐SiO2 particles led to uniform starch/PVA/nano‐SiO2 blend films with better mechanical properties. In addition, the nano‐SiO2 particles can improve the water resistance and light transmission of the blend films. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The paper describes a rapid and simple method for preparing a multifunctional biomaterial based on retinoic acid covalently bound on silica@Ag particles. Monodispersed SiO2 particles were prepared by Stöber method and further used for loading the Ag nanoparticles on their surface. This composite was further functionalized with retinoic acid. Characterization of the hybrid materials was made by UV–Visible spectroscopy, Transmission electron microscopy, Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Thermal analysis. The biological evaluation of the obtained materials revealed their potential use for multiple biomedical applications, from anti-proliferative agents to novel antimicrobial and antibiofilm strategies.  相似文献   

11.
In this study, a series of organic–inorganic hybrid sol–gel materials consisting of a poly(methyl methacrylate) (PMMA) matrix and dispersed silica (SiO2) particles were successfully prepared through an organic‐acid‐catalyzed sol–gel route with N‐methyl‐2‐pyrrolidone as the mixing solvent. The as‐synthesized PMMA–SiO2 nanocomposites were subsequently characterized with Fourier transform infrared spectroscopy and transmission electron microscopy. The solid phase of organic camphor sulfonic acid was employed to catalyze the hydrolysis and condensation (i.e., sol–gel reactions) of tetraethyl orthosilicate in the PMMA matrix. The formation of the hybrid membranes was beneficial for the physical properties at low SiO2 loadings, especially for enhanced mechanical strength and gas barrier properties, in comparison with the neat PMMA. The effects of material composition on the thermal stability, thermal conductivity, mechanical strength, molecular permeability, optical clarity, and surface morphology of the as‐prepared hybrid PMMA–SiO2 nanocomposites in the form of membranes were investigated with thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, gas permeability analysis, ultraviolet–visible transmission spectroscopy, and atomic force microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Polyaniline doped with dodecylbenzene sulfonic acid (PAni.DBSA) was prepared by inverse emulsion polymerization of aniline in toluene medium in the presence of silica (SiO2) nanoparticles. The presence of cetyltrimethylammonium bromide (CTAB) during the aniline polymerization results in hybrid material with smaller particle size, as indicated by dynamic light scattering analysis and scanning electron microscopy. Also the electrical conductivity of such hybrid is one order higher, as compared with that prepared without CTAB. Moreover, more ordered PAni chain is obtained as indicated by the red shift of the π–polaron transition band observed by UV–vis spectroscopy and higher crystallinity observed by X‐ray diffraction analysis. Anti‐corrosive properties of carbon steel substrate coated with epoxy resin containing 5 wt % of PAni.DBSA and the corresponding SiO2‐based hybrid materials were evaluated in 3.5% NaCl solution by electrochemical impedance spectroscopy. The coating resistance increases by one order for the epoxy system containing PAni.DBSA/SiO2 hybrid prepared in the presence of CTAB, thus confirming the anticorrosion efficiency of this hybrid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45505.  相似文献   

13.
周威  傅和青  颜财彬  陈焕钦 《化工学报》2013,64(6):2291-2299
引言水性聚氨酯相对溶剂型聚氨酯具有不燃、气味小、不污染环境等优点[1-2],从而广泛用于涂料[3]、胶黏剂[4]、油墨[5]等领域。目前,常用于软包装领域的薄膜主要是表面能很低的非极性膜,而水性聚氨酯胶黏剂具有较高的表面自由能,对非极性膜的润湿性差,因此需要降低水性聚氨酯的表面张力,达到润湿非极性膜的目的。  相似文献   

14.
Proton exchange membrane fuel cell (PEMFC) is a promising technology that offers a clean and efficient renewable energy source. The hybrid SiO2, sulfonated SiO2 (S SiO2), and metal–organic framework-5 (MOF-5) incorporated sulfonated poly (ether ether ketone) (SPEEK) ternary composite membranes are fabricated using dry phase inversion technique for PEMFC. The membrane performance is evaluated in terms of water uptake, ion exchange capacity, methanol permeability, and proton conductivity (PC) measurements. The morphological study of fabricated membranes was carried out using scanning electron microscopy and atomic force microscopy analysis. The mechanical stability is strengthened up to 30–40%, and the PC gets enhanced with the incorporation of MOF-5, achieving simultaneous improvement in proton conduction and membrane stability. The PC of the ternary SPEEK/S SiO2/MOF-5 membrane is 3.69 × 10−3 S cm−1, 32% more than the neat membrane. A significant increase in selectivity of 23% is observed by incorporating S SiO2 and MOF-5 fillers when compared with the neat membrane. The synergistic effect of MOF-5 and S SiO2 in the ternary membrane has significantly improved water retention and proton conductivity. The functional  SO3H groups of SiO2 and MOF-5 bonded via acid–base electrostatic interactions with the SPEEK; enhances proton conduction accompanied by suppressing the methanol penetration through membranes.  相似文献   

15.
Polyethylene glycol (PEG) structures were deposited onto stainless steel (SS) surfaces by spin coating and argon radio frequency (RF)‐plasma mediated crosslinking. Electron spectroscopy for chemical analysis (ESCA) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) indicated the presence of  CH2 CH2 O structure and C C C linkage, as a result of the plasma crosslinking, on PEG‐modified SS surfaces. Scanning electron microscopy (SEM) indicated complete deposition, and water contact angle analysis revealed higher hydrophilicity on PEG‐modified surfaces compared to unmodified SS surfaces. Surface morphology and roughness analysis by atomic force microscopy (AFM) revealed smoother SS surfaces after PEG modification. The evaluation of antifouling ability of the PEG‐modified SS surfaces was carried out. Compared to the unmodified SS, PEG‐modified surfaces showed about 81–96% decrease in Listeria monocytogenes attachment and biofilm formation (p < 0.05). This cold plasma mediated PEG crosslinking provided a promising technique to reduce bacterial contamination on surfaces encountered in food‐processing environments. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 485–497, 2005  相似文献   

16.
Brominated flame‐retarded high‐density polyethylene (HDPE) composites containing graphene nanoplatelets (GNPs) were prepared via melt blending. A Lewis acid catalyst, anhydrous aluminium chloride (AlCl3), was added to initiate Friedel–Crafts reaction for promoting the dispersion of the GNPs in the polymer matrix. Transmission electron microscopy images and Raman spectroscopy revealed that the GNPs were partly unfolded and the domains became smaller in the presence of AlCl3. Limiting oxygen index and microscale combustion calorimetry showed that the incorporation of AlCl3 into HDPE reduced flammability and slowed down the heat release rate. Thermogravimetric analysis and char residue measurements proved that a uniform dispersion of GNPs was crucial for forming a continuous and compact carbon layer, thus isolating the underlying materials from flame and preventing heat transfer. Rheological and mechanical tests indicated that interfacial adhesion between polymer chains and GNPs was enhanced. © 2014 Society of Chemical Industry  相似文献   

17.
A facile and novel strategy was reported on the fabrication of raspberry‐like SiO2/polystyrene (SiO2/PS) composite particles by emulsion polymerization in the presence of vinyl‐functionalized silica (vinyl‐SiO2) particles, which were prepared via a one‐step sol–gel process using vinyltriethoxysilane as the precursor. The submicron vinyl‐SiO2 particles were used as the core, and nanosized PS particles were then adsorbed onto the vinyl‐SiO2 particles to form raspberry‐like composite particles during the polymerization process. The composition, morphology, and structure of the vinyl‐SiO2 particles and the SiO2/PS hybrid particles were characterized by thermogravimetric analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Superhydrophobic surface can be constructed by directly depositing the raspberry‐like SiO2/PS composite particles on glass substrate, and the water contact angle can be adjusted by the styrene/SiO2 weight ratio. In addition, the superhydrophobic film possessed a strong adhesive force to pin water droplet on the surface even when the film was turned upside down. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
Graphene nanoplatelets (GNP) reinforced tantalum carbide (TaC) composites are exposed to a high temperature plasma flow in order to evaluate the effects of GNP on the oxidation behavior of TaC at conditions approaching those of hypersonic flight environments. The addition of GNP is found to suppress the formation of the oxide layer by up to 60%. The high thermal conductivity of GNPs dissipates heat throughout the sample thereby reducing thermal gradients and reducing the intensity of heating at the surface exposed to plasma. In addition, GNPs enhance oxidation resistance by providing toughening which suppresses crack formation and bursting that accelerates oxidation. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM) reveal that GNPs have the ability to survive the intense high temperature of the plasma. GNPs are believed to seal oxide grain boundaries and hinder the further influx of oxygen. GNPs also provide nano sized carbon needed to induce the localized reduction of Ta2O5 to TaC. Micro computed X-ray tomography (MicroCT) validates that the above mechanisms protect the underlying unoxidized material from the structural damage caused by thermal shocks and high shear forces, by reducing thermal gradients and providing toughness.  相似文献   

19.
Cocrystals of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane (HMX) and 2,4,6‐trinitrotoluene (TNT) with high energy and low sensitivity were obtained by a spray drying method. Scanning electron microscopy (SEM), X‐ray diffraction (XRD), and Fourier Transform Raman spectroscopy (FT‐Raman) were used to characterize the raw materials and cocrystals. Impact sensitivity and thermal decomposition properties of the cocrystals were tested and analyzed. The results show that microparticles prepared by the spray drying method are spherical in shape and 1–10 μm in size. The particles are aggregates of many tiny cocrystals, ranging from 50 nm to 200 nm. The formation of cocrystals originates from the N O ⋅⋅⋅ H hydrogen bonding between  NO2 (HMX) and  CH3 (TNT). Compared with raw HMX, the impact sensitivity of the cocrystals reduces obviously and it is much harder to decompose the cocrystal thermally.  相似文献   

20.
Silicon dioxide/epoxy resin hybrid material was prepared by means of Sol-Gel based on epoxy resin, tetraethyl orthosioate (TEOS), [H2N(CH2)3Si(OC2H5)3](KH-550), Methyltetrahydrophthalic anhydride (MeTHPA), dimethyl phthalate (DMP-30) and (HOCH2CH2)N. The contents of TEOS, KH-550 and reacting temperature influencing on the properties of hybrid materials were studied. The behaviors of the hybrid materials were characterized by differential scanning calorimentry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform-infrared ray (FT-IR) spectroscopy. The results showed that the properties of the material was optimal at approximately 3% TEOS, 2% KH-550, reacting at 60°C, and the mechanical and thermal properties were significantly improved compared with the pure epoxy resin. The dimension of SiO2 particles was about 20 nm, and distributed homogeneously in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号