首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文以平均粒径为0.9mm的玻璃珠为流化颗粒,常温水为流化介质,在直径为97mm的半圆柱形液固导向管喷动流化床中,通过对喷动区和环隙区单位床高压降-流速曲线的分析并结合实验现象的观察,确定了喷动区和环隙区的流型及流型转变速度,在此基础上提出了液固导向管喷动流化床的流型图。研究结果表明,环隙达到流态化后,在较大的喷动液流速范围内,颗粒层能维持在较低的膨胀牢状态下。这对流化床电极非常有利;液固导向管喷动流化床有较大的操作弹性。  相似文献   

2.
在直径150 mm、静床层高280 mm的柱锥形喷动床中,采用平均粒径为1 mm、密度为2 770 kg/m~3的刚玉球为实验固相,采集不同气速下无导流管和带开孔导流管喷动床中的压力信号,通过小波分析与功率谱相结合的方法表征柱锥形喷动床的流型转变。首先利用平均压力法测得本实验条件下无导流管和带开孔导流管喷动床的最小喷动速度分别为0.57,0.50 m/s,然后采用Daubechies2小波对压力信号进行7层小波分解得出能反映喷动床流动特性的主频信号,再对主频信号进行功率谱分析。结果表明:无导流管和带开孔导流管喷动床的主频分别出现在D3(6.25—12.5 Hz)和D2(12.5—25 Hz)频段,且主频信号的功率谱图可以表征喷动床的3种流型:固定床、稳定喷动和不稳定喷动;开孔导流管喷动床的操作弹性(1相似文献   

3.
吴家桦  沈来宏  肖军  卢海勇 《化工学报》2007,58(11):2753-2758
针对化学链燃烧分离CO2技术特点,在一串行流化床(循环床+喷动床)冷态实验装置上,以CaSO4载氧体为实验原料(dp= 0.6 mm),研究串行流化床气固流动特性。基于床内压力分布特征,提出将循环床(空气反应器)沿床高方向划分为鼓泡段和快速流化段2个流型区域,将喷动床(燃料反应器)沿床高方向划分为喷动段、鼓泡段和悬浮段3个流型区域,得出串行流化床内气固流动控制机理。研究并考察了循环床流化风速度、喷动床喷动风速度对串行流化床内反应器间(空气反应器和燃料反应器)气体串混、颗粒循环速率以及床层压降的影响。研究结果表明,流化风是床内颗粒循环的驱动力,流化风速度应控制在 3.77~4.05 m·s-1;喷动风速度对床内颗粒循环以及系统稳定运行起着关键作用,建议将喷动风速度控制在0.42~0.56 m·s-1。  相似文献   

4.
在一套新型液固提升管-流化床组合反应器中,以水-玻璃珠为液-固体系,对f500 mm′4000 mm的液固流化床反应器内不同高度颗粒固含率的径向分布进行了实验,考察了表观液速和颗粒循环速率操作条件对颗粒固含率径向分布的影响. 实验表明,液固流化床内流动区域在轴向上可以划分为分布器影响区、过渡区和均匀流化区,径向上可以划分为中心区和环隙区. 这种分布特征主要取决于分布器的结构、尺寸及其流化介质. 本工作还对液固流化床与气固喷动床的三区流动结构进行了比较.  相似文献   

5.
基于信息熵分析的喷动流化床流动特性   总被引:2,自引:2,他引:0       下载免费PDF全文
钟文琪  章名耀 《化工学报》2005,56(12):2303-2308
建立了300 mm×30 mm×2000 mm的喷动流化床煤气化炉冷态实验装置和多通道压力信号采集系统,引入压力波动时间序列的Shannon信息熵分析,讨论了不同喷动气速度和流化气流率下各床层区域的Shannon 信息熵,并结合高分辨率数码CCD相机所记录的流动状态,建立了Shannon信息熵与流型之间的联系.床层不同区域的Shannon 信息熵具有较大的差异,不同流型的Shannon 信息熵区分度较好.在较高的喷动气速度或流化气流率下,喷动流化床气固运动周期特性消失,呈现出明显的混沌特性,表现为床层各区域Shannon信息熵的急剧增长和床内不稳定的流动状态的发生.结果表明,Shannon信息熵分析有助于认识喷动流化床复杂的流型及其转变和床内气固两相流动的混沌动力学特性.  相似文献   

6.
气固流化床流型特性及其识别的复杂性研究   总被引:4,自引:0,他引:4  
运用复杂性C2、涨落复杂性Cf及Lempel-Ziv复杂性C(n)等复杂性参数对气固流化床压力脉动信号进行分析,研究它们随流化床操作气速增大历经不同流型的变化趋势并将结果作了比较,进一步探讨了流化床流型特性的内在规律性,研究结果表明,在起始流化致鼓泡态转变的过程中,气-固体系会进行一种所谓的“重构”现象,并证实了气泡的存在是影响压力脉动信号复杂性的重要因素,同时实验显示复杂性参数能明确地指示固定床,鼓泡流化及湍动流化等不同流型之间的转变过程,为流型识别提供了新思路。  相似文献   

7.
在一个加压喷动流化床冷态实验装置上研究了加压条件下床中的气固流动状态和气体在各部分的扩散特性。实验设备主体为圆柱形结构,高3.5m,同径0.2m。采用聚苯乙烯和玻璃珠为物料,空气为流化介质,二氧化碳为扩散示踪气体。实验结果表明:加压喷动流化床与常压喷动流化床中气固流动状态差异较大,其喷动流化速度与P^-0.5成正比。实验还发现,气体由压喷动流化床中气固流动状态异较大,其喷动流化速度与P^-0.5正  相似文献   

8.
为获得优化床层结构及操作条件,采用双流体模型对导向管喷动流化床进行了数值模拟。研究考察了进口喷动液流速和流化液流速对颗粒流动规律的影响,结果表明:喷动液流速对颗粒的浓度分布及速度分布影响较小,只能使颗粒在环隙区与导向管内的循环加快;流化液流速对颗粒的浓度分布及速度分布影响较大,随着流化液速度的增大,颗粒在环隙区分布更均匀,浓度降低,颗粒更容易被卷吸进入导向管内,颗粒循环速度加快。  相似文献   

9.
在百年流态化的研究过程中,涉及到直径不同的流化床。但是,多以流化床的大型化为研究目标,对微型流化床及其本身特性的研究很少。作为专门处理固体颗粒的流态化单元过程,其装置的微型化将兼具微通道反应器和宏观流化床各自的优点,是流态化研究的重要方向。鉴于气固微型流化床已有全面的国内外进展综述,本文仅对液固和气液固微型流化床的国内外研究进展进行分析。结论性内容包括:液固微型流化床床径减小,壁面效应增强,最小流化液速实验值大于Ergun公式计算值;需对描述液固均匀膨胀流化规律的Richardson-Zaki方程加以修正。气液固微型流化床内存在4种典型流型:半流化、弹状流、分散鼓泡流和液体输送流;由于床径减小,出现半流化状态,依据压降表观液速关系曲线等无法确定最小流化液速;气液固微型流化床的反应性能得以有效提升;最后给出了进一步研究的方向,以期为后续研究提供参考。  相似文献   

10.
等离子体-喷动流化床结合了先进的等离子体技术与喷动流化床装置,由流过中心喷口的等离子射流(喷动床)以及通过分配器的辅助流化气流(流化床)组成,目前对等离子体-喷动流化床的操作特性及基本现象研究较少。本研究中,搭建了一套等离子体-喷动流化床装置并进行了性能测试,直流等离子体炬功率12 kW,流化物料采用石英砂颗粒。研究中使用上部内径为198 mm柱状、下部为60°锥体的锥柱形反应器,以等离子体射流作为喷动气流,氮气作为流化气流构成了等离子体-喷动流化床。对比研究了物料在常温下与等离子体条件下在装置内的流动情况;在等离子体状态下研究了喷动流化床内物料的磨损情况;测试了等离子状态下喷动流化床装置内的温度分布。研究结果表明:在等离子体条件下实现物料喷动流化所需的气体流量大大减少,高温区集中于物料喷动流化区,体系的能量利用效率高,该装置适宜进行生物质等离子体热解或气化。  相似文献   

11.
在一喷动流化床(直径 50 mm)实验台上采用 0.63~1.60 mm的神府原煤颗粒,在连续进料的情况下进行了最小喷动流化速度以及固定流化气、改变喷动气和固定喷动气、改变流化气的床层压降变化的实验研究.结果表明,最小喷动流化速度可以参考鼓泡流化床的临界流化速度的计算方法;床层压降变化证实,喷动流化床具有良好的调节能力.  相似文献   

12.
喷动流化床的研究进展及其在造粒方面的应用   总被引:1,自引:0,他引:1  
卜伟  程榕  郑燕萍 《浙江化工》2008,39(5):15-19
论述了喷动流化床的起源与发展,讨论了喷动流化床内颗粒运动情况及流型的的变化,并概述了目前对喷动流化床的研究现状及在造粒工业中的应用。  相似文献   

13.
带导流管多层流化床流体力学特性实验研究   总被引:1,自引:0,他引:1  
多层流化床的应用范围受操作可调性和稳定性等因素限制。在改变传统筛板结构的基础上,研究了传统穿流板多层流化床和导流管多层流化床床层压降随表观气速和进料速率的变化规律,实验结果表明,导流管多层流化床不仅大幅减小了床层压降、提高了床体处理能力和可调范围,而且也改善了物料的流化质量。此外,当料层达到一定高度时,导流管多层流化床还具有喷动流化床的特性,同时导流管还具有溢流物料的作用,进一步加大了气固传质效率和床体处理能力。在流体力学分析的基础上,推导出导流管多层流化床床层压降的关联式,得到了床层压降随进气气速和进料速率的关系,与实验数据基本吻合。  相似文献   

14.
起始外循环流化速度是影响气液固外循环流化床正常操作的重要参数之一。提出了以流化床内压差随表观液速的变化阈值来确定流化床起始外循环流化速度的方法。通过实验研究,考察了颗粒直径、颗粒体积分率和表观气速等操作参数,对强制循环条件下流化床起始外循环流化速度的影响。结果表明,液固流化床起始外循环流化速度远大于单个颗粒终端速度,与颗粒体积分率、颗粒平均直径成正比;强制循环时,颗粒体积分率较小的情况下,加入气体后的起始外循环流化速度比液固两相起始外循环流化速度要大,颗粒体积分率较大时,几乎与液固两相相同。  相似文献   

15.
赵永志  程易  金涌 《化学工程》2007,35(6):24-28
采用离散单元法(DEM)-计算流体力学(CFD)双向耦合数值方法对二维导流管喷动床进行了模拟,颗粒的运动通过DEM模型描述,而气体的运动用Navier-Stokes方程进行求解,气体和固体颗粒之间的相互作用通过曳力形式传递。文中将DEM和边界元方法(BEM)结合起来解决颗粒在具有复杂边界设备内的运动。通过采用BEM+DEM-CFD相结合的方法进行模拟计算,得到了喷动床的最小喷动速度,研究了不同表观气速下床内的流型,得到了二维导流管喷动床的床层压降与表观气速的关系,统计分析了喷射区、环隙区内颗粒的运动速度和相应的空隙率,全面地描述了二维导流管喷动床内的气固流动特征。  相似文献   

16.
复杂性在气固流化床流型识别中的应用   总被引:2,自引:0,他引:2  
研究了气固流化床从起始流化态、鼓泡态、湍动态直至快速流化的四个典型流型下,压力脉动时间序列的算法复杂性和涨落复杂性随表观气速的变化趋势。实验结果表明,这两种复杂性参数对于流化床流型变化敏感,但在同种流型下,在操作条件的较宽变化范围内保持稳定。基于这一特性,故将复杂性测度与多元统计分析中的距离判别方法相结合,建立了一种只需获得一定长度的压力脉动时间序列,无需知道具体操作条件的流型识别方法。  相似文献   

17.
以液-固两相流理论为基础,以水和玻璃颗粒体系为研究对象,采用欧拉-欧拉模型对环隙处于流化态与非流化态时的导向管喷动流化床的流化行为进行了数值模拟。动量与质量守恒方程通过有限体积法分别计算。通过曳力,湍流颗粒波动时候的能量耗散进行耦合,包括颗粒与颗粒之间的磨擦作用。对环隙区流化液速度大于(与小于)最小流化液速度时的床层情况进行分析研究,并对比了这两种条件下,粒径、导向管安装高度和填充高度对颗粒质量循环速率的影响。  相似文献   

18.
周云龙  李莹  赵红梅 《化学工程》2011,39(12):59-63
准确识别流型是气固流化床二相流参数检测的重要内容,文中提出一种基于图像光流法和动态纹理特征相 结合的气固流化床流型识别的新方法.实验是在气固流化床二相流实验系统上利用高速摄影系统获取流型图像.流型图像分别为鼓泡床,节涌床,湍动床,快速流化床,稀相输送等5种典型流型.首先对获取的不同流型图像分别进行去噪和对比度拉伸...  相似文献   

19.
实验的三相循环流化床以玻璃珠 (dp = 0.48 mm, ρs = 2460 kg(m(3) 和苯乙烯颗粒 (dp = 1.45mm, ρs = 1264 kg(m(3)为固相,空气为气相,水、0.05%、0.20% (mass) CMCS (羧甲基纤维素钠)水溶液为液相.实验研究了液体粘度、表观液体速度、表观气体速度、辅助液体速度及颗粒密度对颗粒循环速度的影响.随着液体粘度的增加,颗粒循环速度增加;随着表观液体速度和辅助液体速度增加,颗粒循环速度都增加;随着表观气体速度的增加,颗粒循环速度减小.低密度颗粒系统同高密度颗粒系统相比,低密度颗粒系统能提前从三相传统流型进入三相循环流型.实验还研究了液体粘度对低密度颗粒的起始液体速度和过渡液体速度的影响,为得到三相循环流化床的流型图提供了可靠的依据.  相似文献   

20.
湍动流态化是介于鼓泡流态化和快速流态化之间的一个流型.相比于鼓泡流态化,它具有气固接触效率高、操作稳定、产量高、放大性能好等优点,是工业流化床催化反应器理想的操作区域.以往对这一流型转变的研究多在常温常压下进行.由于实际工业反应器多在一定的操作温度和压力下进行,研究温度和压力的影响对工业反应器的设计和操作就变得十分重要.实验是在φ150mm热流化床(T=室温-450℃)和φ284mm加压流化床(P=1×10~5-7×10~5Pa)中进行的;空气为流化介质;颗粒为广布于Geldart分类图上A、B两区的8种颗粒(与流化床催化反应所使用的颗粒范围相一致).采集密相压力波动信号进行时间域和频率域的分析.由床层不均匀度指数的峰值处确定起始流型转变速度u_c和对应此处的床层最大平均压力波动幅度S_(max).将粗、细颗粒的S_(max)对温度标绘后发现.高温下不同物性颗粒的S_(max)间差距缩小,即颗粒物性的不同所引起的床层流体力学行为的差异在高温下趋于缩小.实验结果表明,温度变化时是通过改变气体的密度和粘度来影响流型转变过程的;而压力变化时主要是通过改变气体的密度来影响这一过程的.在恒定气速、变化压力时,观察到了流型转变压力P_c.本文绘出了S=f(u,p)的三维图象,直观地表示了流型转变速度u_c及流型转变压力P_c的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号