首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为获得优化床层结构及操作条件,采用双流体模型对导向管喷动流化床进行了数值模拟。研究考察了进口喷动液流速和流化液流速对颗粒流动规律的影响,结果表明:喷动液流速对颗粒的浓度分布及速度分布影响较小,只能使颗粒在环隙区与导向管内的循环加快;流化液流速对颗粒的浓度分布及速度分布影响较大,随着流化液速度的增大,颗粒在环隙区分布更均匀,浓度降低,颗粒更容易被卷吸进入导向管内,颗粒循环速度加快。  相似文献   

2.
以粒径为0.9mm的铜颗粒为流化颗粒,常温水为流化介质,在截面为59.2×15.6mm的矩形床中,对液固导流管喷动流化床的流型及流型转变进行实验了研究。通过对床层压降流量曲线的分析并结合实验观察,确定了液固导向管喷动流化床的流型及流型的划分,提出了流型图。研究结果对进一步开展导流管喷动流化床电极研究有重要的参考意义。  相似文献   

3.
以液-固两相流理论为基础,以水和玻璃颗粒体系为研究对象,采用欧拉-欧拉模型对环隙处于流化态与非流化态时的导向管喷动流化床的流化行为进行了数值模拟。动量与质量守恒方程通过有限体积法分别计算。通过曳力,湍流颗粒波动时候的能量耗散进行耦合,包括颗粒与颗粒之间的磨擦作用。对环隙区流化液速度大于(与小于)最小流化液速度时的床层情况进行分析研究,并对比了这两种条件下,粒径、导向管安装高度和填充高度对颗粒质量循环速率的影响。  相似文献   

4.
在一套新型液固提升管-流化床组合反应器中,以水-玻璃珠为液-固体系,对f500 mm′4000 mm的液固流化床反应器内不同高度颗粒固含率的径向分布进行了实验,考察了表观液速和颗粒循环速率操作条件对颗粒固含率径向分布的影响. 实验表明,液固流化床内流动区域在轴向上可以划分为分布器影响区、过渡区和均匀流化区,径向上可以划分为中心区和环隙区. 这种分布特征主要取决于分布器的结构、尺寸及其流化介质. 本工作还对液固流化床与气固喷动床的三区流动结构进行了比较.  相似文献   

5.
为阐明超细粉在声场导向管喷动流化床内的流化机理,并为进一步优化和完善床层结构及操作条件提供基础,采用标准k-ε湍流模型计算了导向管喷动流化床内的单相气体流场,考察了进口流化气速和射流气速对气体流动规律的影响,以及声场对导向管喷动流化床内气体轴向速度分布及其脉动均方根的影响。结果表明:在高速射流条件下,导向管喷动流化床内气体呈内循环流动,气体循环流量随流化气速度的增加而减小,但随射流气速度的增加而增加;外加声场使环隙区和喷泉区的气体流动更加均匀,显著增加环隙区和喷泉区气流的湍动程度,且湍动程度随声压级的增大而显著增大,随声波频率的升高而小幅度降低。  相似文献   

6.
导向管喷动床是较为常见的一种喷动床改进床型,通过阻断喷动区与环隙区气固接触来提高颗粒循环的规律性与稳定性。本文采用计算颗粒流体力学(CPFD)方法对于直径150mm的柱锥式导向管喷动床进行了数值模拟研究,考察了导向管直径对于喷动床内颗粒流动特性的影响,从环隙区死区分布、颗粒速度分布、固体循环量等方面分析了具有不同直径导向管喷动床的运行状态。结果表明,加入导向管在减少床内死区的同时也降低了运行时的固体循环量,对于本次采用的喷动床结构尺寸与运行参数,只有在导向管直径为40~60mm时才能保证床内具有良好喷动状态,综合考虑各因素,选用直径50~55mm的导向管最为合适。对于具有类似结构与运行条件的柱锥喷动床,导向管直径可考虑选为无导向管运行时喷动区直径的1.2~1.375倍。  相似文献   

7.
在环隙区截面为46 mm×15.5 mm,喷动区截面为10 mm×15.5 mm的半床形式的矩形导向管喷动流化床电极中,以直径0.45 mm的铜颗粒为阴极颗粒,考察了电解液硫酸浓度、槽电压、流化液流量等因素对浓度为1 g?L?1的稀CuSO4溶液电解过程的影响。研究结果表明,导向管喷动流化床电极可以有效地消除"沟流"和"死区",避免颗粒结块;增加硫酸浓度,可以提高溶液的电导率,加快铜离子的沉积速率,但硫酸浓度过高会导致析氢加剧,降低电流效率和铜离子沉积速率;增加槽电压虽然可以增加电解初期铜离子的沉积速率,但由于析氢更早更快,铜回收率和电流效率将下降;流化液流量增加,环隙区膨胀率增大,阴极有效面积减小,颗粒相电阻增大,铜离子沉积速率和电流效率都下降。在实验条件范围内较佳的工艺条件是:硫酸浓度0.6 mol?L?1、槽电压2.5 V、流化液流速135 L?h?1,在此条件下电解100 min,铜回收率大于99%,平均电流效率大于36%;电解140 min铜回收率可达99.98%、铜离子浓度可降到0.25 ppm。  相似文献   

8.
在内径120mm的圆柱形导向管喷动流化床内,实验测定了单相气体流场的时均速度分布和湍流强度分布以及声波对它们的影响。结果表明:采用高速射流作为喷动气时,在卷吸区射流中心速度衰减快,卷吸作用强;进入导向管后中心速度开始下降仍然很快,但在经过较短距离后即趋于稳定,径向速度分布亦趋于稳定但不均匀;环隙速度分布在分布板影响下则较均匀;在喷泉区,刚离开导向管时射流中心速度仍较大,但随高度增加而较快下降,径向速度分布也趋于平缓。导向管区的湍流强度远高于环隙区和喷泉区。声波在导向管喷动流化床内单相气流中传播时衰减很小,并对时均速度几乎没有影响,但可以显著提高气流的湍流强度,且湍流强度的增加幅度随声强增加而加大,随频率增加而减小。湍流强度的增加,可以增强气流对颗粒的分散作用,有利于抑制导向管内粉体偏析,防止被射流破碎后的小聚团在环隙区发生再团聚,减少喷泉区粉体夹带,提高超细粉的流化质量。  相似文献   

9.
以水和玻璃颗粒体系为研究对象,以液-固两相流理论为基础,采用欧拉-欧拉模型对导向管喷动流化床环隙处于近似活塞流时床体流动周期性波动进行数值模拟。动量与质量守恒方程通过有限体积法分别计算。通过曳力,湍流颗粒波动时的能量耗散进行耦合,包括颗粒与颗粒之间的磨擦作用。模拟结果与实验观察相吻合,颗粒质量流率波动频率为3.5Hz。分析了由环隙卷吸进导向管的水的变化和环隙区与导向管中心处的压降比的变化对床体流动周期性波动的影响。  相似文献   

10.
为了对环隙区内的颗粒堆积层产生局部流化作用,提出了一种在喷动床锥体处开一定数量侧喷嘴的整体式多喷嘴喷动-流化床结构,并采用双流体模型(TFM)对三维整体式多喷嘴喷动-流化床内的气固两相流动行为进行了数值模拟。通过计算流体力学(CFD)模拟获得了喷动床内颗粒体积分数、颗粒速度及流场均匀度分布情况,并将模拟结果与传统喷动床进行了对比,同时对锥体处开孔直径等关键参数进行了优化分析。结果表明:与常规喷动床相比,三维整体式多喷嘴喷动-流化床结构能有效增强喷动床环隙区与喷射区颗粒的径向混合,特别是流化了喷动床环隙区底部颗粒的流动死区。颗粒流场均匀度(CV)值随着床层高度的增加而上升,表明多喷嘴对颗粒流场的均匀化效应主要体现在喷动床柱锥区,当A_i/A_z=0.67时,侧喷嘴对喷动-流化床内整体的颗粒流化作用达到最佳。  相似文献   

11.
在内径120 mm的半圆柱型声场导向管喷动流化床中,以平均粒径290 nm的TiO_2颗粒为原料,高速空气射流为喷动气,考察了操作条件、声参数(频率和声压)对纳米颗粒在声场导向管喷流床中的流态化特性的影响。结果表明:声波可以有效抑制沟流,改善环隙流化质量,防止射流旁路,从而促使粉体稳定循环,加快循环速率;同时声波可以显著地降低纳米TiO_2颗粒的最小喷动速度,声波频率一定时,最小喷动速度随声压的增加而减小;声压一定时,最小喷动速度在声波频率为80 Hz时达到最小值,低于或者高于80 Hz,最小喷动速度都会增大。  相似文献   

12.
采用双流体模型(TFM)对一种新型整体式多喷嘴喷动-流化床内气固两相流动进行了数值模拟,在喷动床锥体两侧开若干侧喷嘴形成辅助多喷嘴结构,使其在喷动床锥体处产生喷动-流化效果,从而对环隙区锥体边界处堆积颗粒层产生扰流作用。通过CFD数值模拟获得了喷动床内颗粒速度及浓度的分布情况,并与单喷嘴喷动床模拟结果进行对比。研究并优化分析了不同侧喷嘴数量以及侧喷嘴宽度等关键参数对喷动床气固两相流动的影响规律。研究表明,与常规喷动床相比,整体式多喷嘴喷动-流化床结构能有效增强喷动床内环隙区颗粒相运动,特别是强化了喷动床环隙区底部流动死区的颗粒运动,使得锥体边界层颗的粒体积分数显著下降,颗粒体积分数沿径向分布变得更为均匀,同时省略了旁路供气辅助设备。  相似文献   

13.
采用双流体理论对增压导向式喷动流化床内喷动区和环形区气固运动速度和近隙率进行数值模拟。计算结果表明:喷动区颗粒速度在初始急布上升而气体速度则急剧下降,进入导向管后趋于平缓,而且颗粒加速程度还与系统压力有关;环形区气体速度在卷吸段增大,进入隔离流区后保持不变,而颗粒速度则一直保持不变;喷动区的空隙率在郑吸段下降,进入导向管后又开始上升。  相似文献   

14.
在内径120 mm、高1 000 mm的导向管喷流床中,以空气为气相,原生粒径290 nm的TiO_2超细颗粒为固相,借助CFD软件ANSYS Fluent 15.0,将声场模型与欧拉双流体模型相结合,将声场对导向管喷流床中超细粉聚团的流动特性进行数值模拟,研究了声场对气泡和固含率云图、固相时均浓度分布、固(气)相时均速度分布以及流化气旁路分率的影响。结果表明:声场的震荡作用促进环隙区颗粒在气流中均匀分散,减小气泡尺寸,从而使固含率分布变得更均匀;而导向管内由于射流速度较高,声场对固相浓度分布影响很小,但在壁面附近,由于射流速度下降,声场的震荡作用使固相浓度下降;声场增大了环隙和喷泉区的湍动强度,轴向时均速度在径向上分布得更加均匀;声场能够有效抑制流化气的旁路,显著减小流化气旁路分率。  相似文献   

15.
基于信息熵分析的喷动流化床流动特性   总被引:2,自引:2,他引:0       下载免费PDF全文
钟文琪  章名耀 《化工学报》2005,56(12):2303-2308
建立了300 mm×30 mm×2000 mm的喷动流化床煤气化炉冷态实验装置和多通道压力信号采集系统,引入压力波动时间序列的Shannon信息熵分析,讨论了不同喷动气速度和流化气流率下各床层区域的Shannon 信息熵,并结合高分辨率数码CCD相机所记录的流动状态,建立了Shannon信息熵与流型之间的联系.床层不同区域的Shannon 信息熵具有较大的差异,不同流型的Shannon 信息熵区分度较好.在较高的喷动气速度或流化气流率下,喷动流化床气固运动周期特性消失,呈现出明显的混沌特性,表现为床层各区域Shannon信息熵的急剧增长和床内不稳定的流动状态的发生.结果表明,Shannon信息熵分析有助于认识喷动流化床复杂的流型及其转变和床内气固两相流动的混沌动力学特性.  相似文献   

16.
吴家桦  沈来宏  肖军  卢海勇 《化工学报》2007,58(11):2753-2758
针对化学链燃烧分离CO2技术特点,在一串行流化床(循环床+喷动床)冷态实验装置上,以CaSO4载氧体为实验原料(dp= 0.6 mm),研究串行流化床气固流动特性。基于床内压力分布特征,提出将循环床(空气反应器)沿床高方向划分为鼓泡段和快速流化段2个流型区域,将喷动床(燃料反应器)沿床高方向划分为喷动段、鼓泡段和悬浮段3个流型区域,得出串行流化床内气固流动控制机理。研究并考察了循环床流化风速度、喷动床喷动风速度对串行流化床内反应器间(空气反应器和燃料反应器)气体串混、颗粒循环速率以及床层压降的影响。研究结果表明,流化风是床内颗粒循环的驱动力,流化风速度应控制在 3.77~4.05 m·s-1;喷动风速度对床内颗粒循环以及系统稳定运行起着关键作用,建议将喷动风速度控制在0.42~0.56 m·s-1。  相似文献   

17.
本文以半床形矩形导向管喷动流化床电极为研究对象,以直径0.45mm的铜颗粒为阴极颗粒,研究了电流密度、喷动液流量对浓度为1g/L的稀CuSO4溶液电解过程的影响。研究结果表明:增加电流密度虽然可以增加电解初期铜离子的沉积速率,电流密度过大导致氢离子析出,铜回收率和电流效率将下降;喷动液流量增加,可以有效消除颗粒表面的浓度分布层,减小传质阻力,增加铜离子沉积速率,喷动液流量过大,铜颗粒在环隙区停留时间减小,铜离子在颗粒表面放电反应减弱,导致铜离子沉积速率降低。在电流密度为6.24A/m2,喷动液流量为80 L/h条件下,电解120min,回收率到达99.74﹪,电流效率大于30﹪,铜离子浓度为2.65 mg/L。  相似文献   

18.
在喷动区截面为10 mm×15.5 mm,环隙区截面为46 mm×15.5 mm的半矩形导向管喷动流化床电极中,以三种特定的操作状态,作为三类流化床电极的替代,研究了对应的铜离子回收率,电解效率等电解品质因素,研究结果表明:三类流化床电极在恒流条件比恒压条件下的电解性能均表现更佳,且以状态Ⅲ对应的典型的导向管喷动流化床电极具有最佳的电解性能,在实验条件下电解160分钟,铜离子的极限浓度可降至0.8ppm,铜离子回收率可达99.92%,平均电流效率为31.63%,最大电流效率可达83.25%。  相似文献   

19.
李国兵  李明  陈松  黄国强 《化工学报》2013,64(4):1176-1182
在内径为182 mm的喷动流化床中安装内径80 mm的导向管,以平均粒径为2.2 mm的尿素颗粒为物料,对喷动气旁路特性进行了实验研究,分别考察了夹带区高度、导向管长度、喷嘴内径、床层高度、喷动气速和流化气速对喷动气旁路分率的影响,结果表明随着喷动气速的增大,喷动气体旁路分率先增后减。导向管安装高度越高,气体旁路分率越大。床层高度增大喷动气体旁路分率略有降低。而喷嘴直径小于50 mm时气体旁路分率随喷嘴直径增大而提高,在大于50 mm时气体旁路分率随喷嘴直径增大维持不变。当气速较小时,导向管高度增大会引起气体旁路分率增大,引入少量流化气能有效地抑制喷动气旁路。  相似文献   

20.
在内径为182mm的导向管喷动流化床中,以亚毫米级的宽筛分硅颗粒为物料,对喷动气旁路特性进行了实验研究,分别考察了静止床层高度、夹带区高度、导向管内径、喷动气速和流化气速对喷动气旁路分率的影响。结果表明喷动气的旁路分率随喷动气速的增加首先保持平稳,随后降低直至保持稳定值;当喷动气速较小时,旁路分率随静止床层高度的增加而增加,当喷动气速足够大时,静止床高的变化对旁路分率影响不大;此外,喷动气旁路分率随流化气速、导向管内径的增加而增大,但随着导向管安装高度的增加而减小。同时,采用基于颗粒动力学理论的双欧拉模型,通过Fluent建立了与冷态实验条件一致的导向管喷动流化床气固两相流的数理模型,经计算流体力学模拟考察了相关参数对模拟结果的影响。结果表明压降与实验值吻合,流态化外观也与实验结果一致。所建立的模型具有一定的准确性和可靠性,可以成为预测实验结果的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号