首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
29Si magic-angle spinning nuclear magnetic resonance (MASNMR) was used to study the room-temperature hydration of C3S, ß-C2S, and reactive ß-C2S mixed with different amounts of silica fume (SF) that had been hydrated up to nine months and longer. The overall CaO:SiO2 molar ratios of the mixes were 0.12, 0.20, 0.35, 0.50, and 0.80. NMR spectroscopy was used to quantify the remaining starting materials and the resulting hydration products of different species. A broad peak assigned to Q3, appearing in both the fourier transform (FT) and the cross-polarization (CP) modes, increased in intensity with increased SF content and with age. This Q3 species was attributed to two sources: (1) the surface hydroxylation of SF and (2) the cross-linking of dreierketten (chains of silicate tetrahedra arranged in a repeating three-unit conformation) in the calcium silicate hydrate (C-S-H) structure. A Q4 species also appeared in the CP spectra of samples with large SF additions after extended hydration and was attributed to cross-polarization by adjacent hydroxylated Q3 species at the surface of amorphous SiO2.  相似文献   

2.
Selective isotopic enrichment of SiO2 with 29Si in a mixture with tricalcium silicate (C3S) has allowed the Si from this phase to be effectively labeled during the course of the hydration reaction, thus isolating its contribution to the reaction. A double Q2 signal has been observed in 29SI solid-state MAS NMR spectroscopy of C-S-H gels of relatively low Ca/Si ratio, prepared by hydration or by carbonation of a C3S paste. The origin of the weaker, downfield peak is discussed and tentatively attributed to bridging tetrahedra of a dreierkette silicate chain structure.  相似文献   

3.
The use of cross-polarization (CP) NMR in conjunction with magic angle sample spinning (MASS) to examine the hydration reaction of tricalcium silicate (C3S) is described. In particular the very early stages of the reaction both with and without admixtures has been studied as well as the hydration in a ball mill. The combination of CP and non-CP 29Si NMR permits the distinction between silicate units associated with protons, i.e., in hydrated material, and those in anhydrous material. It has been found that in paste hydration there is steady formation of a small amount of hydrated monomeric silicate units during the induction period. In ball mill hydration the formation of the crystalline calcium silicate hydrate, afwillite, which contains only hydrated monomeric silicate species, can be monitored. These results are interpreted in terms of possible mechanisms for C3S hydration.  相似文献   

4.
The effect on β-C2S of two stabilizing agents, calcium sulfate and alumina, has been investigated using high-resolution 29Si solid state NMR spectroscopy. Syntheses were achieved via the gel route, wet or dry processes. Room-temperature NMR spectra characteristics were analyzed as a function of the sintering temperature. The incorporation of Al3+ and S6+ ions, which finds expression in a noticeable line broadening, is shown to be effective above 1200°C. The 29Si chemical shift is unchanged upon doping, suggesting a mean SiO4 tetrahedra geometry identical to that in pure β-C2S. General trends on the structure adopted by C2S upon Al3+ and S6+ doping are also discussed.  相似文献   

5.
The influence of the alkaline activator (NaOH, waterglass, or Na2CO3) on the structure of the hydrated calcium silicate formed in alkali-activated slag (AAS) cement pastes has been investigated by FTIR, 29Si and 27Al magic-angle scattering nuclear magnetic resonance, and TEM/EDX techniques. In all cases, the main product formed after 7 d of activation, with activators giving an Na2O concentration of 4%, is a semicrystalline calcium silicate hydrate with a dreierkette-type anion. In these structures, linear finite chains of silicate tetrahedra ( Q 2 units) are linked to central Ca-O layers, and tetrahedral aluminum occupies bridging positions in the chains. The main chain length and the amount of aluminum incorporated in the tetrahedral chains depend on the activator used. The detection of Q 3 silicon entities in alkaline-activated slags is discussed in relation to the possible formation of cross-linked structures that may be responsible for increased flexural and compressive strengths in AAS mortars.  相似文献   

6.
b29Si and 27Al MAS-NMR were performed on NaOH-activated blast-furnace slag to better characterize the amorphous and poorly crystalline phases which occur in this system. The unreacted glass has a mainly dimeric silicate structure represented by a broad 29Si peak (FWHM = 15 ppm) centered at –74.5 ppm [ Q 1], with aluminum present exclusively in tetrahedral coordination. Upon reaction with 5M NaOH ( w/s = 0.4), three new 29Si peaks with widths of ca. 2 ppm are formed at -78.5 Q 1, –81.4 [ Q 2(1Al)J, and -84.3 [ Q 2]. Relative peak areas indicate a mostly dimeric silicate structure for the tobermorite-like C─S─H layers, with roughly a third of the bridging sites occupied by aluminum, and less than 10% by silicon. In addition to the tetrahedrally coordinated aluminum substituted in the C─S─H structure, 27Al MAS-NMR reveals the presence of aluminum in octahedral sites, which is attributed to the aluminate phase (C,M)4AH13. 29Si results indicate rapid initial consumption of the glass, with roughly a third of the glass reacting within the first day and another third consumed over the following 27 days.  相似文献   

7.
Investigation of a series of synthetic alkali silicate gels and gels produced by the alkali silica reaction (ASR) in field concrete using 29Si NMR spectroscopy, X-ray diffraction, and bulk chemical analysis shows that local structures of the synthetic and field gels are quite similar. The most abundant Si sites for the field and synthetic gels with similar compositions have Q3 polymerization, and the number of non-bridging oxygens per Si is similar for these samples. These samples also yield a basal X-ray diffraction peak near 8–12 Å, suggesting that the structure is dominated by sheet-like units, consistent with the dominant Q3 polymerization. Calculations based on the relative site abundances of the sites observed by 29Si NMR and the bulk chemical compositions indicate that there is insufficient alkali to charge-balance all the non-bridging oxygens and that there is a significant concentration of Si–OH linkages. The results provide strong support for the basic structural concepts of the so-called kanemite model for ASR gel proposed by Wieker and coworkers, although the overall gel structure is likely to be more complex.  相似文献   

8.
The effects of Al3+, B3+, P5+, Fe3+, S6+, and K+ ions on the stability of the β-phase and its hydration rate were studied in reactive dicalcium silicate (C2S, Ca2SiO4) synthesized using the Pechini process. In particular, the dependences of the phase stability and degree of hydration on the calcination temperature (i.e., particle size) and the concentration of the stabilizing ions were investigated. The phase evolution in doped C2S was determined using XRD, and the degree of hydration was estimated by the peak intensity ratio of the hydrates to the nonhydrates in 29Si MAS NMR spectra. The stabilizing ability of the ions varied significantly, and the B3+ ions were quite effective in stabilizing the β-phase over a wide range of doping concentrations. The hydration results indicated that differently stabilized β-C2S hydrated at different rates, and Al3+- and B3+-doped C2S exhibited increased degree of hydration for all doping concentration ranges investigated. The effect of the doping concentration on degree of hydration was strongly dependent on the stabilizing ions.  相似文献   

9.
Early-stage thermal oxidation (below 1100°C) of carbothermally synthesized β-sialon powder was monitored by X-ray powder diffraction, solid-state 29Si and 27Al MAS NMR spectroscopy, and thermogravimetry. No crystalline oxidation products were detected by XRD but 29Si and 27Al MAS NMR indicated the early formation of amorphous silica, followed by the formation of an amorphous aluminosilicate with an atomic environment similar to that of mullite. The initial oxidation was described by a linear kinetic law with an activation energy of 170 kJmol−1, suggesting the rate-limiting step to be due to dissolution of O2 in an amorphous silica surface layer on the β-sialon particles.  相似文献   

10.
The hydration behavior at 25°C of highly reactive β-dicalcium silicate synthesized from hillebrandite (Ca2(SiO3)(OH)2) was studied over a period of 7 to 224 d using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR). The hydration product, C-S-H, contains Q2 and Q1 silicate tetrahedra, the chemical shifts of which are independent of the water/solid (w/s) ratio and curing time. Until the reaction is completed, the amounts of Q1 and Q2 formed are independent of the w/s ratio, being determined only by the degree of reaction. The ratio Q2/Q1 increases as the reaction progresses and as the curing time becomes longer. From the values of Q2/Q1, it appears that the hydrate is a mixture of dimers and short single-chain polymers. The Ca/Si ratio of the hydrate is high, taking values close to 2.0, but the Ca/Si ratio does not influence the Q2/Q1 ratio. It was also found that the NMR peak intensities allow quantitative assessment similar to XRD.  相似文献   

11.
The reaction products formed in a series of fully "equilibrated," roomtemperature-hydrated, fumed colloidal silica plus lime water mixtures were examined using 29Si magic angle spinning nuclear magnetic resonance. The data suggest that two structurally distinct calcium silicate hydrate (C-S-H) phases exist in the system CaO–SiO2–H2O. The more silica-rich C-S-H (Ca/Si = 0.65 to 1.0) consists predominantly of long chains of silica tetrahedra (Q2 middle units) similar to those found in 1.4-nm tobermorite. The studied more lime-rich C-S-H (Ca / Si = 1.1 to 1.3) consists of a mixture of dimer (Q1) and shorter chains (Q1 end units and Q2 middle units) similar to that reported for synthetic jennite. No monomer units (Q0) were detected.  相似文献   

12.
Solid-state 27Al and 29Si magic angle spinning NMR spectroscopy has been combined with electron energy loss spectroscopy carried out in the transmission electron microscope to determine the location of Al substituting in a semicrystalline C-S-H gel present in a hydrated synthetic slag glass. The gel is found to contain mainly pentameric silicate chains in which the central silicon is substituted by aluminum.  相似文献   

13.
Water is lost in two overlapping steps from well-crystallized pyrophyllite from Coromandel, New Zealand. The pyrophyllite structure survives the loss of the first 30% of the total water content, but the loss of a further 60% water in the second step results in the formation of pyrophyllite dehydroxylate, with corresponding changes in both the 29Si and 27Al solid-state NMR spectra. Detailed analysis of the 29Si chemical shift of the dehydroxylate has allowed the silicate layer structure of this phase to be refined. A similarly detailed interpretation of the 27A1 spectra is not possible because of electric field gradient effects which result in the loss of ∼90% of the A1 spectral intensity due to the formation of five-coordinate A1 on dehydroxylation. The loss of further water from the dehydroxylate on further heating results in the formation of mullite and cristobalite and is accompanied by changes in the 29Si and 27Al spectra which can be accounted for in terms of coordination changes in the structural regions which contained the residual hydroxyls.  相似文献   

14.
Magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopy (27Al) detected the coordination of Al in clays containing as little as 0.26% Al2O3. The 29Si MASNMR of fluorphlogopite showed three distinct Si chemical environments which suggested short-range ordering. Synthetic laponite and mica-montmorillonite showed broad 29Si resonances indicative of short-range disorder. A saponite showed four 29Si resonances. Considerable insight into the short-range ordering of clays can be gained by 27Al and 29Si MASNMR.  相似文献   

15.
The structures of partially carbonated hardened C3S cement pastes have been investigated by a combination of 29Si magic angle spinning nuclear magnetic resonance spectroscopy and analytical transmission electron microscopy, supported by X-ray diffraction and thermogravimetric analysis. Progressive changes in structure are reported for thin slices for a paste carbonated in pure CO2 for times from 1 to 16 h, and the results are compared with those for a paste carbonated for 2 months in air. C-S-H gel of reduced Ca:Si ratio and increased silicate polymerization was formed during the early stages of carbonation. The morphology of the original C-S-H was, in the main, retained. A cross-linked silica-rich gel formed at later times in paste carbonated in CO2 but not up to the time of 2 months in air. Calcium carbonate took the form of microcrystals of vaterite and calcite which formed dense masses between gel fibrils and around partially reacted CH crystals, possibly accounting for the observed slowing in the rate of reaction of CH with time.  相似文献   

16.
Solid-state 29Si and 27Al NMR spectra of kaolinite fired at 800° to 1450°C, interpreted in light of a newly proposed metakaolinite structure and complementary X-ray diffraction results, lead to the following conclusions about the hightemperature reactions: (1) Removal of the final residual hydroxyl radicals of metakaolinite at ∼9707deg;C triggers the separation of a considerable amount of amorphous free silica and the formation of poorly crystalline mullite and a spinel phase. (2) Mullite and spinel form in tandem, the former originating in the vicinity of AI-0 units of regular octahedral and tetrahedral symmetry randomly distributed throughout the metakaolinite structure. (3) The initially formed mullite is alumina-rich but at higher temperatures progressively gains silica, approaching the conventional 3Al2O3· 2SiO2 composition. (4) The spinel phase contains insufficient Si to be detected by 29Si NMR but has a 27Al NMR spectrum consistent with γ-Al2O3. On further heating, the spinel is converted to mullite by reaction with some of the amorpholls silica, the balance of which eventually becomes cristobalite.  相似文献   

17.
Homogeneous SiAION glasses containing up to 1 wt% nitrogen were synthesized via a pressureless method with a controlled quench rate and structurally investigated using 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR), Raman, and infrared (IR) spectroscopies. Minor changes occur with the incorporation of nitrogen into the aluminosilicate glass structure as evidenced by modifications to spectra of a nitrogen-free aluminosilicate glass. The 27Al MAS NMR spectrum of the SiAION glass shows the existence of aluminum in 4-,5-, and 6-coordination to oxygen. The 29Si MAS NMR spectra show a distribution of silicon sites in 4-coordination to oxygen. Raman and IR spectra of the SiAION glass show additional features due to incorporation of nitrogen in the structure compared with spectra of nitrogen-free aluminosilicate glasses.  相似文献   

18.
Solid-state 29Si NMR techniques were used to characterize laser-synthesized silicon nitride powder prepared from the reaction of silane with ammonia. When the powder is exposed to water vapor, a hydrated layer rapidly forms at the surface. A comparison of 29Si cross polarization (CP) and Bloch decay (BD)-MAS-NMR spectra revealed differences between surface and bulk compositions. CP-NMR identified Si-NHx (x = 1, 2) species with a chemical shift of −45 ppm in the as-synthesized ( unexposed ) powder. In BD-NMR spectra, the nitride resonance is observed at −48 ppm. For the hydrated powder, CP-NMR identified additional =Si-OH ( Q3 ), =Si-(OH)2 ( Q2 ), and SiO2 ( Q4 ) species present at the surface. The CP-NMR spectra were corrected for TlpH relaxation effects and deconvoluted into individual components in order to extract quantitative measurements of the various species present.  相似文献   

19.
The structures of roller-quenched SiO2-Al2O3 glasses containing 10 to 50 wt% Al2O3 were investigated by TEM and high-resolution 27Al and 29Si magic angle sample spinning nuclear magnetic resonance (MASS-NMR) spectroscopy. The chemical shifts observed in the NMR spectra of these phase-separated (on the TEM scale) glasses provide evidence, for the existence of all three (4-, 5-, and 6-jold) Al-coordination units in these glasses and for the presence of A1 in both the Si-rich and Si-poor phases.  相似文献   

20.
29Si and 31P magic-angle sample-spinning NMR spectroscopy indicates that phosphorus added as P2O5 to alkaline-earth metasilicate glasses is present as monomeric (PO4)3– structural units and that incorporation of this phosphorus increases the average polymerization of the silicate portion of the glass. These results are consistent with published interpretations of Raman spectra of similar composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号