首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beta C2S was hydrated at room temperature with and without added CaCl2 or C2H5OH by methods previously studied for the hydration of C3S, i.e. paste, bottle, and ball-mill hydration. The amount of reacted β-C2S, the Ca(OH)2 concentration in the liquid phase, the CaO/SiO2 molar ratio, and the specific surface area of the hydrate were investigated. A topochemical reaction occurs between water and β-C2S, resulting in the appearance of solid Ca(OH)2 and a hydrated silicate with a CaO/SiO2 molar ratio of ≃1. As the liquid phase becomes richer in Ca(OH)2, the first hydrate transforms to one with a higher CaO/SiO2 ratio. Addition of CaCl2 increases the reaction rate and the surface area of the hydrate but to a much lesser extent than in the hydration of C3S, whereas C2H6OH strongly depresses the hydration rate of β-C2S, as observed for C3S hydration.  相似文献   

2.
Selective isotopic enrichment of SiO2 with 29Si in a mixture with tricalcium silicate (C3S) has allowed the Si from this phase to be effectively labeled during the course of the hydration reaction, thus isolating its contribution to the reaction. A double Q2 signal has been observed in 29SI solid-state MAS NMR spectroscopy of C-S-H gels of relatively low Ca/Si ratio, prepared by hydration or by carbonation of a C3S paste. The origin of the weaker, downfield peak is discussed and tentatively attributed to bridging tetrahedra of a dreierkette silicate chain structure.  相似文献   

3.
The effects of Al3+, B3+, P5+, Fe3+, S6+, and K+ ions on the stability of the β-phase and its hydration rate were studied in reactive dicalcium silicate (C2S, Ca2SiO4) synthesized using the Pechini process. In particular, the dependences of the phase stability and degree of hydration on the calcination temperature (i.e., particle size) and the concentration of the stabilizing ions were investigated. The phase evolution in doped C2S was determined using XRD, and the degree of hydration was estimated by the peak intensity ratio of the hydrates to the nonhydrates in 29Si MAS NMR spectra. The stabilizing ability of the ions varied significantly, and the B3+ ions were quite effective in stabilizing the β-phase over a wide range of doping concentrations. The hydration results indicated that differently stabilized β-C2S hydrated at different rates, and Al3+- and B3+-doped C2S exhibited increased degree of hydration for all doping concentration ranges investigated. The effect of the doping concentration on degree of hydration was strongly dependent on the stabilizing ions.  相似文献   

4.
29Si magic-angle spinning nuclear magnetic resonance (MASNMR) was used to study the room-temperature hydration of C3S, ß-C2S, and reactive ß-C2S mixed with different amounts of silica fume (SF) that had been hydrated up to nine months and longer. The overall CaO:SiO2 molar ratios of the mixes were 0.12, 0.20, 0.35, 0.50, and 0.80. NMR spectroscopy was used to quantify the remaining starting materials and the resulting hydration products of different species. A broad peak assigned to Q3, appearing in both the fourier transform (FT) and the cross-polarization (CP) modes, increased in intensity with increased SF content and with age. This Q3 species was attributed to two sources: (1) the surface hydroxylation of SF and (2) the cross-linking of dreierketten (chains of silicate tetrahedra arranged in a repeating three-unit conformation) in the calcium silicate hydrate (C-S-H) structure. A Q4 species also appeared in the CP spectra of samples with large SF additions after extended hydration and was attributed to cross-polarization by adjacent hydroxylated Q3 species at the surface of amorphous SiO2.  相似文献   

5.
The initial hydration processes of activated and ordinary dicalcium silicates (β-C2S) have been followed by using high resolution 29Si nuclear magnetic resonance (NMR) associated with cross-polarization and magic-angle spinning (CP/MAS) without enrichment of 29Si. The preliminary results show that the initial hydration products contain monomeric silicate hydrates and the amount of these monomeric silicate hydrates determines the hydration rate in the initial hydration period. As the hydration process goes on, the end-group of tetrahedra anions (Q1 units) appears and then gradually dominates the spectrum.  相似文献   

6.
29Si, 27Al, and 1H MAS NMR studies of partially carbonated mature ordinary Portland cement (OPC) and tricalcium silicate (C3S) pastes have been carried out. The water-to-solid ratios ( W/S ) have been varied between 0 and 1 at hydration temperatures of 23o and 90oC. Various Q ni units with n =0, 1,2,3, and 4, and a Q3 (1Al) group have been identified using 29Si NMR. Cross-polarization experiments, in addition, have made it possible to assign the OH groups. Two types of fourfold- and one type sixfold-coordinated aluminum have been distinguished using 27Al NMR. In C3S pastes for w/s >0.7, progressive carbonation leads to a nearly perfect three-dimensional network consisting of Q3 and Q4only. In contrast, in OPC pasted only about 40% of the highly polymerized silicate units are formed, partially copolymerized with AlO4 tetrahedra.  相似文献   

7.
Early Hydration of Tricalcium Silicate   总被引:1,自引:0,他引:1  
The hydration of tricalcium silicate (C3S) in the preacceleration stages was studied. The C3S particles carry a positive charge during the early stages of hydration. Following a rapid hydrolysis of C3S, calcium ions adsorbed on the Si-rich surface of C3S particles, greatly reducing their further dissolution, thus initiating the induction period. The [Ca2+] and [OH-] continue to increase at lower rates and, because Ca(OH)2 crystal growth is inhibited by silicate ions, become supersaturated with respect to Ca(OH)2. When the supersaturation reaches a value of ∼1.5 to 2.0 times the saturation concentration, nuclei are formed, and rapid growth of Ca(OH)2 and C-S-H is initiated. These products act as sinks for the ions in solution, thus enhancing the further dissolution of C3S.  相似文献   

8.
The carbonation-reaction kinetics of beta-dicalcium silicate (2CaO·SiO2 or β-C2S) and tricalcium silicate (3CaO. SiO2 or C3S) powders were determined as a function of material parameters and reaction conditions and an equation was developed which predicted the degree of reaction. The effect of relative humidity, partial pressure of CO2, surface area, reaction temperature, and reaction time on the degree of reaction was determined. Carbonation followed a decreasing-volume, diffusion-controlled kinetic model. The activation energies for carbonation of β-C2S and C3S were 16.9 and 9.8 kcal/mol, respectively. Aragonite was the principal carbonate formed during the reaction and the rate of carbonate formation was coincident with depletion of the calcium silicates; C-S-H gel formation was minimal.  相似文献   

9.
Microstructural evolution during the heat treatment of cement clinker was investigated. Two model specimens, which consisted of faceted tricalcium silicate (C3S) and spherical dicalcium silicate (C2S) grains dispersed in a liquid matrix, were prepared with 5 wt% of large seed particles. The seed particles of faceted C3S grains grew extensively, whereas those of the spherical C2S grains grew rather slowly, relative to the matrix grains. As a consequence, C3S grains exhibited a bimodal size distribution that was typical of exaggerated grain growth, whereas C2S grains retained a uniform and normal size distribution. These results suggest that the growth of faceted C3S grains was controlled by the interface atomic attachment, such as two-dimensional nucleation, and that of spherical C2S grains was controlled by diffusion through the liquid matrix. The dependence of growth mechanisms on grain morphology has been explained in terms of the atomistic structure of the solid/liquid interface.  相似文献   

10.
The adsorption of calcium lignosulfonate and salicylic acid was studied on the hydration products of the four principal components of portland cement. To investigate the adsorption as a function of development of hydration product, the determinations were made after varying hydration times. The times allowed were from 5 min to 24 hr for tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) and from 1 hr to 28 days for β-dicalcium silicate (β-C2S) and tricalcium silicate (C3S). Samples were characterized with respect to surface area and poresize distribution. The effect of gypsum on the adsorption was also investigated. The results indicate that the amounts of salicylic acid and calcium lignosulfonate adsorbed on the hydration products of C3A, and of calcium  相似文献   

11.
C3S and C3S+2% CaCl2 were hydrated for varied times; the degree of hydration and zeta potential were determined. In the absence of CaCl2, the duration of the induction period was 5 h, whereas when CaCl2 was added, an induction period of 1 h was observed. The zeta potential was positive, maximum, and constant during induction .  相似文献   

12.
The concentration of ionic species in the solution in contact with hydrating dicalcium silicate (C2S) has been studied as a function of time and in the presence of admixtures. The ionic product for calcium hydroxide increases quite slowly and saturation levels are not greatly exceeded at any time. Small quantities of C3S control the ionic concentrations and cause considerable super-saturation with respect to calcium hydroxide. The implications of the present data with respect to C2S hydration are discussed.  相似文献   

13.
The hydration kinetics of tricalcium silicate (C3S), the main constituent of portland cement, were analyzed with a mathematical "boundary nucleation" model in which nucleation of the hydration product occurs only on internal boundaries corresponding to the C3S particle surfaces. This model more closely approximates the C3S hydration process than does the widely used Avrami nucleation and growth model. In particular, the boundary model accounts for the important effect of the C3S powder surface area on the hydration kinetics. Both models were applied to isothermal calorimetry data from hydrating C3S pastes in the temperature range of 10°–40°C. The boundary nucleation model provides a better fit to the early hydration rate peak than does the Avrami model, despite having one less varying parameter. The nucleation rate (per unit area) and the linear growth rate of the hydration product were calculated from the fitted values of the rate constants and the independently measured powder surface area. The growth rate follows a simple Arrhenius temperature dependence with a constant activation energy of 31.2 kJ/mol, while the activation energy associated with the nucleation rate increases with increasing temperature. The start of the nucleation and growth process coincides with the time of initial mixing, indicating that the initial slow reaction period known as the "induction period" is not a separate chemical process as has often been hypothesized.  相似文献   

14.
The influence of the additive SO3 on the phase relationships in the quaternary system CaO-SiO2-Al2O3-Fe2O3 was investigated by observing the change of volume ratio of 3CaOSiO2 (C3S) to 2CaOSiO2 (C2S) + CaO (C) in the sintered material with the increase of SO3 content. The primary phase volume of C3S in the quaternary phase diagram shrank with the increase of SO3 and disappeared when the SO3 content exceeded 2.6 wt% in the sintered material. Changes in the peritectic reaction relationship between CaO (C), 2CaOSiO2 (C2S), 3CaOSiO2 (C3S), 3CaOAl2O3 (C3A), 4CaOAl2O3Fe2O3 (C4AF), and liquid were also observed and discussed.  相似文献   

15.
Investigations of tricalcium silicate (C3S) suspensions using different techniques have shown the initial hydration kinetics of C3S are strongly dependent on the water/C3S ratio. In order to provide new experimental data on the hydration, we have adapted a Tian-Calvet heat flow isothermal microcalorimeter to study thermal flow variation released by C3S stirred suspensions in water and saturated lime water. We observed three exothemic peaks and one endothermic peak. Their relative magnitude and duration depend on the W/C ration and the lime solution concentration. The protective layer theory appears to be consistent with our results for high W/C ratio. Moreover, portlandite precipitation seems to be a consequence and not the cause of the acceleratory period.  相似文献   

16.
Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes   总被引:2,自引:0,他引:2  
Single-walled carbon nanotubes (SWCNT) were distributed on the surface of ordinary Portland cement (OPC) grains. The OPC/SWCNT composite was then hydrated at a 0.5 w/c ratio. The effects of the SWCNT on the early hydration process were studied using isothermal conduction calorimetry, high-resolution scanning electron microscopy and thermogravimetric analysis. The observed behavior of the composite samples was compared with both OPC sonicated without SWCNT and previously published data on as-delivered OPC. The SWCNT were found to accelerate the hydration reaction of the C3S in the OPC. The morphology of both the initial C3A and the C3S hydration products were found to be affected by the presence of the SWCNT. In particular, the nanotubes appeared to act as nucleating sites for the C3S hydration products, with the nanotubes becoming rapidly coated with C–S–H. The resulting structures remained on the surface of the cement grains while those in the sonicated and as-delivered OPC samples grew out from the grain surfaces to form typical C–S–H clusters. Classical evidence of reinforcing behavior, in the form of fiber pullout of the SWCNT bundles, was observed by 24 h of hydration.  相似文献   

17.
The effects of aliphatic sugar alcohols (e.g., threitol, xylitol, sorbitol) on the hydration of tricalcium silicate (C3S) and ordinary portland cement (OPC) were investigated and compared with those of sucrose, a well-established cement set retarder. Only sugar alcohols which contain threo diol functionality retarded the setting of C3S and OPC, their efficacy increasing with the number of threo hydroxy pairs and, to a smaller extent, with the overall population of hydroxy groups. None, however, were as effective as sucrose. The initial and final setting times increased exponentially with the concentration of saccharide, although the hydration of OPC was less inhibited than that of C3S. Saccharides function as "delayed accelerators," that is, cement hydration is first inhibited and then proceeds faster than in saccharide-free cement. This behavior is consistent with the theory that the induction period is controlled by slow formation and/or poisoning of the stable calcium silicate hydrate (CSH) nuclei. The early inhibiting influence of saccharides on CSH precipitation is apparently stronger than on the growth of crystalline calcium hydroxide. Saccharides did not negatively affect the degree of hydration and compressive strength of fully set OPC paste; on the contrary, sorbitol yielded modest increases.  相似文献   

18.
A chlorine-bearing alinite cement was synthesized using reagent-grade chemicals, and the phase evolution and hydration behavior of the alinite clinker were examined. The effects of the MgO content on alinite formation and hydration also were investigated. Alinite began to appear at 1000°C from β-C2S, C11A7CaCl2, and unreacted raw materials, and an almost single-phase alinite was obtained at 1300°C. The alinite phase also was produced without MgO addition. However, CaO, β-C2S, and C11A7CaCl2 phases were present. Alinite cements hydrated rapidly after a short incubation period, and the hydration products were C-S-H gels, Ca(OH)2, and a Fridel's saltlike phase. The local environmental changes of silicon and aluminum during the formation and hydration of alinite were determined using magic-angle-spinning nuclear magnetic resonance spectroscopy. The Cl-ion exsolution from the alinite paste during hydration was measured using ion chromatography.  相似文献   

19.
Calcium silicate hydrate (C-S-H) gels are the principal bonding material in portland cement. Their solubility properties have been described, enabling pH and solubilities to be predicted. However, the gels also interact with other components of cements, notably alkalis. C-S-H has been prepared from lime and silicic acid in solutions of sodium hydroxide or potassium hydroxide and by the hydration of tricalcium silicate (C3S) in sodium hydroxide solutions. Analyses of aqueous phases in equilibrium with 85 gels show that the aqueous calcium and silicon concentrations fit smooth curves over the range of increasing sodium concentrations. Where anomalous data occur, they correspond to solids with low lime contents: such gels are tentatively assumed to fall into a region where the presence of another gel phase influences the aqueous composition. Dimensional changes have been observed in the hydration products of C3S as a function of alkali content and these may be relevant to the alkali-silica reaction. The significance of this and other data is discussed with reference to real cement systems.  相似文献   

20.
Kinetics of the Hydration of Tricalcium Silicate   总被引:3,自引:0,他引:3  
The hydration of tricalcium silicate was followed at a water/C3S ratio of 0.7 between 5° and 50°C by determining free lime and combined water. Free lime was estimated by the o -cresol method, whereas combined water was calculated from the amount of free water remaining in the paste as determined by extraction with methyl ethyl ketone. The ratio of free lime to combined water was constant throughout the hydration; this ratio indicated that CSH(II) may be represented as 1.68CaO · SiO2· 2.58H2O. When maximum supersaturation of the solution with Ca2+] is attained, the induction period terminates and the reaction proceeds rapidly, probably as the result of propagative surface nucleation-growth of CSH(II). Kinetic equations were derived for these reactions. When the surface of C3S is entirely covered by CSH(II), the reaction becomes slow and is controlled by diffusion of water. Constants involved in the kinetic equations are evaluated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号