首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
细菌纤维素/透明质酸复合材料的生物合成及表征   总被引:1,自引:0,他引:1  
在培育细菌纤维素(BC)过程中添加不同分子量的两种透明质酸(HA),分别制备出不同的细菌纤维素复合物HA/BC(Mw=3,000)和HA/BC(Mw=300,000)。采用红外光谱、扫描电子显微镜、X射线衍射和热重分析对其结构和性能进行了表征。添加HA后提高了复合物的产量;FTIR结果表明了HA与BC之间存在交联;添加HA增大了BC的热稳定性,而对BC的结晶指数影响不大,且HA/BC(3,000)的性能始终优于HA/BC(300,000);HA(3,000)增大了BC的拉伸强度,而HA(300,000)反而减小了其拉伸强度。结果表明添加小分子量的HA可制备最大热失重温度较高的HA/BC复合物。  相似文献   

2.
研究了铁锰复合氧化物(FMBO)吸附去除As(Ⅲ)、As(Ⅴ)的性能。结果表明FMBO对As(Ⅲ)、As(Ⅴ)均具有较好的吸附能力,其饱和吸附量分别为111.10、71.40 mg·g-1。As(Ⅲ)和As(Ⅴ)是通过与FMBO表面的Fe—OH基团进行交换并形成内层络合物的形式被FMBO吸附,且As(Ⅲ)的吸附是吸附和氧化共同作用的结果。另外,沼液中共存离子对As(Ⅲ)和As(Ⅴ)的吸附有不同的影响。Zn2+能够增加FMBO对As(Ⅲ)、As(Ⅴ)的吸附量,且增加幅度随着Zn2+浓度的增加而增加;磷酸根对As(Ⅲ)、As(Ⅴ)的吸附有明显的抑制作用,当磷与砷的分子摩尔比为1时,FMBO对As(Ⅲ)、As(Ⅴ)的吸附量分别降低了34.70%、31.50%;但是有机物(腐殖酸、动物蛋白及尿素)对FMBO吸附As(Ⅲ)、As(Ⅴ)的影响不大。利用FMBO对实际沼液中的砷进行吸附,结果表明砷的去除率平均达到65%左右,使吸附后某些沼液中砷的浓度达到生活饮用水标准和地表水排放标准。因此,将FMBO用于砷污染的沼液及水体的治理具有很好的应用前景。  相似文献   

3.
利用实验室条件下制备的纳米零价铁(NZVI)、纳米FeOOH和纳米Fe_3O_4,研究不同环境因素条件下各纳米铁系物对As(Ⅲ)的吸附性能。通过扫描电镜和X射线衍射扫描三种铁系物的微观结构,并分析模拟吸附动力学和吸附等温线。批试验的结果显示:当pH值为6,As(Ⅲ)的初始浓度为0.5 mg/L,2 h内NZVI对溶液中As(Ⅲ)的去除率高达99%,最大吸附量为5.99 mg/g;纳米FeOOH的最佳吸附条件为pH值为5,As(Ⅲ)初始浓度1 mg/L,4 h内的去除率可达92%;纳米Fe_3O_4的最佳吸附条件为pH值为7,As(Ⅲ)初始浓度为1 mg/L,24 h的最终去除率为60%。共存离子影响试验表明,对三种纳米铁系物吸附作用影响最大的均是溶液中的磷酸根。对吸附机理进行研究,结果表明:三种纳米铁系物吸附As(Ⅲ)的过程符合伪二级动力学模型,NZVI和纳米FeOOH的吸附等温数据符合Freundlich模型,纳米Fe_3O_4的吸附等温模型更加符合Langmuir等温模型。  相似文献   

4.
通过对工业废弃物电解锰渣(electrolytic manganese residues, EMRs)进行改性制备As(Ⅲ)吸附材料(改性EMRs),探究了NaOH用量、超声及微波对其表面结构及吸附性能的影响。结果表明:该工业废渣在固液比M(EMRs)∶V(NaOH, aq)=1∶10(C_(NaOH,aq)=2.0 mol·L~(-1))条件下,经超声反应(200 W) 2 h脱除大部分Si、S、Ca后,再微波(700 W)反应5 min以使Fe、Mn等活性吸附基团在其表面沉积,最后经105℃烘干制得改性EMRs。SEM结果表明,EMRs改性后表面形成片层纳米结构,对砷具有良好的吸附性能,可将初始As(Ⅲ)浓度为50 mg·L~(-1)废水出水中砷降至0.042 mg·L~(-1),符合国家地表水环境质量标准Ⅰ类水质量要求(GB 3838—2002);同时,经3%NaOH溶液再生处理后可继续使用。XPS结果表明,改性EMRs吸附砷性能与其表面Fe_3O_4、FeOOH、MnO_2等对As(Ⅲ)具有吸附作用或氧化作用的活性物种的增多密切相关。  相似文献   

5.
利用三种构型的阳离子表面活性剂〔十六烷基三甲基溴化铵(CTAB)、二亚甲基-1,2-二(N-十二烷基-N,N-二甲基溴化铵) (Gemini 12-2-12)和溴化十烃季胺(Bola)〕分别修饰Fe3O4纳米颗粒,制得Fe3O4@CTAB、Fe3O4@Gemini和Fe3O4@Bola纳米颗粒(三者统称Fe3O4@surfactants)。将其用于水中As(Ⅴ)和As(Ⅲ)的处理。通过XRD、TEM、FTIR和磁性测量系统(VSM)对其形貌进行了表征,同时对As(Ⅴ)和As(Ⅲ)的吸附进行吸附动力学、吸附等温模型拟合和吸附行为研究,并考察了Fe3O4@surfactants的吸附-解吸再生循环性能及结构稳定性。结果表明,Fe3O4@surfactants对As(Ⅴ)的吸附效果均高于As(Ⅲ),吸附符合准二级动力学模型和Langmuir吸附等温模型,且Gemini 12-2-12表面活性剂所修饰的Fe3O4纳米颗粒的吸附容量最大。该吸附过程的吸附驱动力主要来自阳离子表面活性剂分子在固液界面的排列行为、表面活性剂头基与阴离子的静电作用以及尾链与As(Ⅴ)、As(Ⅲ)之间的配位作用。以去除效率较高的As(Ⅴ)进行循环实验,经过5次吸附-解吸循环实验后,Fe3O4@surfactants对As(Ⅴ)的吸附率依然维持在85%左右,且纳米颗粒回收率均在90%以上。  相似文献   

6.
在UV辐照射条件下,研究了钛盐混凝剂(TiCl_4)同步光催化氧化-混凝对水中As(Ⅲ)的去除效率及动力学特征。结果表明,TiCl_4对As(Ⅲ)的去除率在等电点附近(pH=5)达到最大,单一TiCl_4对As(Ⅲ)的去除率为73%;而增加UV辐照后,其去除效率增加至99%。UV/TiCl_4将As(Ⅲ)氧化为更易被絮体吸附的As(V)是去除率增加的主要原因。As(Ⅲ)的氧化吸附速率符合1级反应动力学模型,在pH=5~7内,其速率常数kO呈现出先增加后减小的变化趋势,在pH=6时达到最大(k_O=1.00 min~(-1));溶液中总砷(As(Ⅲ)+As(V))的吸附速率也符合1级动力学模型,且速率常数在pH=5~7内随pH的增加而增大,最大可达2.27 min~(-1)。  相似文献   

7.
零价铁(ZVI)去除水中的As(Ⅲ)   总被引:5,自引:2,他引:3       下载免费PDF全文
赵雅光  万俊锋  王杰  余飞  王岩 《化工学报》2015,66(2):730-737
采用市售还原铁粉(零价铁,ZVI)及其与石英砂的复合物为吸附剂,对水中As(Ⅲ)的吸附分别做了分批试验和连续性试验。分批试验结果表明,ZVI吸附水中As(Ⅲ)的去除效果受pH主导,其最佳pH范围4~9,ZVI主要通过其表面吸附及其腐蚀产物对As(Ⅲ)的吸附共沉淀作用达到对As(Ⅲ)的去除,同时,在ZVI腐蚀的过程中还伴有在ZVI表面As(Ⅲ)的氧化、还原作用,As(Ⅲ)的氧化受ZVI腐蚀过程的影响,其氧化过程主要发生在Fe2+氧化为Fe3+的阶段;连续性试验利用ZVI与石英砂复合物对模拟含砷废水进行吸附研究,从吸附柱进水至吸附饱和共20 d时间,经计算,ZVI对As(Ⅲ)的吸附容量为89.90 mg·g-1,ZVI腐蚀产物在石英砂表面的晶态类型对As(Ⅲ)的吸附容量有影响,无定形态的ZVI腐蚀产物对As(Ⅲ)的吸附容量最大,质量分数和原子分数分别可达到6.73%和2.15%。  相似文献   

8.
采用共沉淀法制备了硝酸根型层状复合金属氢氧化物NiCoFe-LDHs,研究其对水中的三价砷的吸附性能,系统研究溶液初始浓度、吸附时间以及溶液pH值等因素对吸附性能的影响。结果表明,当As(Ⅲ)溶液浓度为2 mg/L时,吸附率达到了81.1%,吸附量在As(Ⅲ)溶液浓度为4 mg/L时,达到了15.72 mg/g,而溶液pH值为8时,吸附性能最好,且吸附过程在30 min内可以达到平衡。热力学和等温吸附式的研究表明NiCoFe-LDHs对As(Ⅲ)的吸附过程,符合Langmuir模型和伪二级动力学模型,因此吸附过程发生在吸附剂表面,且吸附过程为化学吸附。  相似文献   

9.
将不同配比的丙烯酰胺(AM)、丙烯酸(AA)和细菌纤维素(BC)单体混合后进行共聚,制得了P(AA-co-AM)/BC复合水凝胶。测定了其吸水性能、保水性能、动态力学性能、热性能、微观结构以及对金属离子的吸附性能等。研究结果表明:当w(AM)=60%(相对于AA质量而言)、w(BC)=0.4%(相对于单体总质量而言)时,复合水凝胶的吸水性能、保水性能、溶胀性能相对最好,其动态力学性能和耐热性均得到改善;当w(AM)=70%、w(BC)=0.4%时,复合水凝胶对金属Cu2+的吸附性能更好;添加BC后复合水凝胶具有更多的微孔结构,孔隙排列密集、均匀。  相似文献   

10.
载铁活性炭吸附剂的制备及除砷(Ⅲ)性能研究   总被引:2,自引:0,他引:2  
肖静  田凯勋  高怡 《工业水处理》2012,32(11):28-32
考察了载铁活性炭制备过程中铁盐种类、铁盐浓度、熟化温度对载铁活性炭吸附砷性能的影响,得出最佳制备条件为0.8 mol/L氯化铁浸渍、60℃熟化。静态吸附实验表明,载铁活性炭对As(Ⅲ)的吸附去除率明显高于活性炭,吸附等温线更符合Langmuir模型,为单分子层吸附。当pH为7~10时,载铁活性炭对As(Ⅲ)的去除率在70%以上,当pH=8时,As(Ⅲ)去除率高达90.48%。再生实验表明,此吸附剂具有良好的可再生性能。  相似文献   

11.
研究了铁锰复合氧化物(FMBO)吸附去除As(Ⅲ)、As(Ⅴ)的性能。结果表明FMBO对As(Ⅲ)、As(Ⅴ)均具有较好的吸附能力,其饱和吸附量分别为111.10、71.40 mg·g-1。As(Ⅲ)和As(Ⅴ)是通过与FMBO表面的Fe-OH基团进行交换并形成内层络合物的形式被FMBO吸附,且As(Ⅲ)的吸附是吸附和氧化共同作用的结果。另外,沼液中共存离子对As(Ⅲ)和As(Ⅴ)的吸附有不同的影响。Zn2+能够增加FMBO对As(Ⅲ)、As(Ⅴ)的吸附量,且增加幅度随着Zn2+浓度的增加而增加;磷酸根对As(Ⅲ)、As(Ⅴ)的吸附有明显的抑制作用,当磷与砷的分子摩尔比为1时,FMBO对As(Ⅲ)、As(Ⅴ)的吸附量分别降低了34.70%、31.50%;但是有机物(腐殖酸、动物蛋白及尿素)对FMBO吸附As(Ⅲ)、As(Ⅴ)的影响不大。利用FMBO对实际沼液中的砷进行吸附,结果表明砷的去除率平均达到65%左右,使吸附后某些沼液中砷的浓度达到生活饮用水标准和地表水排放标准。因此,将FMBO用于砷污染的沼液及水体的治理具有很好的应用前景。  相似文献   

12.
用腐殖酸包覆磁性四氧化三铁纳米材料吸附饮用水中的六价铬离子。结果表明,最佳吸附条件为:腐殖酸包覆四氧化三铁质量比为1∶1,反应温度90℃,分散剂与去离子水的比例为1∶5,反应时间60 min,Fe_3O_4/HA对Cr(Ⅵ)的吸附时间为30 min。在最佳条件下,Fe_3O_4/HA对Cr(Ⅵ)吸附量为25.83 mg/g,氨水(25%~28%)用量为10 m L;Fe_3O_4/HA对Cr(Ⅵ)的吸附符合Freundlich吸附等温方程。  相似文献   

13.
采用溶剂热法制备了Fe_3O_4包覆的TiO_2纳米复合材料TiO_2@Fe_3O_4,并研究其对砷的吸附去除及光催化氧化效果。扫描电子显微镜(SEM)和透射电子显微镜(TEM)的形貌表征表明Fe_3O_4均匀地包覆在TiO_2表面。采用Langmuir方程和Freundlich方程对吸附等温线进行拟合,结果表明吸附等温线更符合Langmuir模型。TiO_2@Fe_3O_4复合材料对As(Ⅲ)和As(V)均具有很好的吸附性能,吸附容量分别为303 mg/g和125 mg/g。光催化试验表明羟基自由基的产生促进了光催化氧化效果。该材料可以有效去除水体中的砷并且在使用后可用磁性分离的方式快速分离回收。TiO_2@Fe_3O_4复合材料经2次再生后与第1次使用相比,对As(Ⅲ)和As(Ⅴ)的去除率分别减少9.3%和6.9%,但仍分别达到77.9%和80.5%,显示了一定的实用性。  相似文献   

14.
《应用化工》2022,(8):1710-1714
用腐殖酸包覆磁性四氧化三铁纳米材料吸附饮用水中的六价铬离子。结果表明,最佳吸附条件为:腐殖酸包覆四氧化三铁质量比为1∶1,反应温度90℃,分散剂与去离子水的比例为1∶5,反应时间60 min,Fe_3O_4/HA对Cr(Ⅵ)的吸附时间为30 min。在最佳条件下,Fe_3O_4/HA对Cr(Ⅵ)吸附量为25.83 mg/g,氨水(25%28%)用量为10 m L;Fe_3O_4/HA对Cr(Ⅵ)的吸附符合Freundlich吸附等温方程。  相似文献   

15.
D301负载Fe(Ⅲ)去除饮用水中的As(Ⅴ)   总被引:1,自引:0,他引:1  
研究了用Fe(Ⅲ)改性的大孔弱碱性阴离子交换树脂D301在不同实验条件下对饮用水中As(Ⅴ)的吸附性能,包括pH、温度、吸附时间和共存离子的影响。研究结果表明:在pH<10时,D301-Fe对As(Ⅴ)具有较强的吸附性能,吸附方程符合Langmuir等温线,吸附过程分为自发、放热、熵推动过程;D301-Fe对砷的吸附遵循二级动力学方程;当含As(Ⅴ)与SO42-、Cl-、F-共存时,D301-Fe对砷仍具有较高的去除率,而与PO43-共存时其对砷的去除率明显下降,基本低于40%。  相似文献   

16.
氢氧化铁胶体对砷吸附行为的初步研究   总被引:5,自引:0,他引:5  
研究了pH值、铁与砷的量比和初始砷浓度等因素对用氢氧化铁胶体吸附去除砷的影响,确定了最佳吸附条件。研究结果表明,在初始As(Ⅴ)或As(Ⅲ)浓度为0.1mmol/L条件下,去除As(Ⅴ)的最佳pH值为4~8,去除As(Ⅲ)最佳pH值为6~9;在初始As(Ⅴ)浓度为0.5mmol/L条件下,去除As(Ⅴ)的最佳pH值为5~7,吸附后溶液中砷含量低于0.5mg/L,达到了《污水综合排放标准(GB8978-1996)》中工业废水最高容许排放总砷浓度一级标准。通过等温吸附试验的研究,得出了As(Ⅴ)和As(Ⅲ)的饱和吸附容量分别为0.4971mol/kg和0.3068mol/kg。  相似文献   

17.
孙燕  蓝际荣  郭莉  孙朋  叶恒朋  杜冬云  占伟 《化工学报》2019,70(6):2377-2385
通过对工业废弃物电解锰渣(electrolytic manganese residues, EMRs)进行改性制备As(Ⅲ)吸附材料(改性EMRs),探究了NaOH用量、超声及微波对其表面结构及吸附性能的影响。结果表明:该工业废渣在固液比M(EMRs)∶V(NaOH, aq) = 1∶10(C NaOH,aq = 2.0 mol·L-1)条件下,经超声反应(200 W)2 h脱除大部分Si、S、Ca后,再微波(700 W)反应5 min以使Fe、Mn等活性吸附基团在其表面沉积,最后经105℃烘干制得改性EMRs。SEM结果表明,EMRs改性后表面形成片层纳米结构,对砷具有良好的吸附性能,可将初始As(Ⅲ)浓度为50 mg·L-1废水出水中砷降至0.042 mg·L-1,符合国家地表水环境质量标准Ⅰ类水质量要求(GB 3838—2002);同时,经3% NaOH溶液再生处理后可继续使用。XPS结果表明,改性EMRs吸附砷性能与其表面Fe3O4、FeOOH、MnO2等对As(Ⅲ)具有吸附作用或氧化作用的活性物种的增多密切相关。  相似文献   

18.
制备了负载Ti/Fe腐植酸吸附剂,采用SEM、XRD等分析方法对负载Ti/Fe腐植酸的结构进行了表征,并对As(Ⅲ)进行了吸附性能的研究。结果表明,负载Ti/Fe腐植酸吸附剂较负载前的腐植酸,表面负载了大量类球状颗粒,内部孔道面积和表面积增加,活性吸附位点的数量增大,吸附能力有了明显的提高。在55℃、p H值为6、吸附平衡时间为120 min时,负载Ti/Fe腐植酸吸附剂对As(Ⅲ)有较好的吸附效果。负载Ti/Fe腐植酸吸附剂对As(Ⅲ)的吸附符合Freundlich吸附模型。  相似文献   

19.
制备了负载Ti/Fe腐植酸吸附剂,采用SEM、XRD等分析方法对负载Ti/Fe腐植酸的结构进行了表征,并对As(Ⅲ)进行了吸附性能的研究。结果表明,负载Ti/Fe腐植酸吸附剂较负载前的腐植酸,表面负载了大量类球状颗粒,内部孔道面积和表面积增加,活性吸附位点的数量增大,吸附能力有了明显的提高。在55℃、p H值为6、吸附平衡时间为120 min时,负载Ti/Fe腐植酸吸附剂对As(Ⅲ)有较好的吸附效果。负载Ti/Fe腐植酸吸附剂对As(Ⅲ)的吸附符合Freundlich吸附模型。  相似文献   

20.
细菌纤维素(BC)是一种由微生物发酵技术制备的纤维素,分子内存在大量的羟基,具有超细网状纳米纤维结构,比表面积高,其独特的结构和物理化学性质对溶液中金属离子吸附性能起着重要作用。为了加快BC的发展及其对重金属吸附的应用,首先介绍了影响细菌纤维素的制备因素,例如:菌种、常用碳源及添加助剂。其次重点介绍了BC对Cu~(2+)、Pb~(2+)、Cd~(2+)、Cr~(6+)及其他金属离子(如Pd~(2+)、Ag~+、Au~(3+)、Fe~(2+)、Sb~(3+))等的吸附性能。然后对BC吸附金属离子机理进行了综述。最后,对BC的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号