首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
彭冬根  徐少华 《化工学报》2020,71(4):1554-1561
介绍了一种基于蒸发冷却的外冷型溶液除湿装置设计原理及实验样机结构。分别以LiCl和CaCl2溶液为除湿剂,以除湿率和除湿空气出口温度为评价指标,通过实验对比分析了LiCl和CaCl2在蒸发冷却条件下的除湿性能差异。结果表明:在所有实验条件下,浓度为0.35的LiCl溶液与浓度为0.45的CaCl2溶液除湿性能相似,其除湿率与对应空气出口温度均高于浓度为0.35的CaCl2溶液;浓度为0.35的LiCl溶液比浓度为0.35的CaCl2溶液的除湿率要约提高73%,并且空气流量越大其绝对提高值越大。另外,蒸发冷却空气流量增加除使除湿率增加外还会降低空气出口温度,约1.4℃;改变喷淋水温度对CaCl2溶液除湿性能的影响比对LiCl溶液更为明显。研究结果为该种外冷型溶液除湿器的实际应用提供参考。  相似文献   

2.
燃煤电厂湿法脱硫后排放的烟气中含有大量水蒸气,造成大量水资源的浪费,溶液除湿工艺是水分回收技术之一。通过绝热型管式降膜除湿试验台,采用价格低廉的CaCl_2溶液为除湿剂,探究了湿烟气状态下溶液浓度、溶液温度、传质面积及进口温度对除湿性能的影响,试验得到了CaCl_2溶液除湿过程的传质系数,溶液除湿效率远高于清水冷凝除湿,为烟气除湿工艺的选择和性能预测提供了参考。  相似文献   

3.
经济型多元溶液的替代方案及除湿再生性能验证   总被引:1,自引:0,他引:1       下载免费PDF全文
王沐  殷勇高  郭枭爽  陈婷婷 《化工学报》2018,69(Z2):420-424
本研究旨在寻求更经济的替代单一溶液的多元溶液并验证其除湿再生性能。基于简单混合法则,预测多元溶液的配制方案。以空气出口含湿量作为除湿、再生性能的评价指标,搭建实验台进行实验验证。综合考虑除湿性能、再生性能和经济性,实验结果表明,43%、45%、48% LiCl/CaCl2多元溶液替代39% LiCl溶液作除湿剂,48% LiCl/CaCl2除湿性能略差,再生能力比39% LiCl提高了29.5%,再生能力最优,成本是39% LiCl的1/3,是最佳的替代除湿剂;51% LiBr/CaCl2多元溶液替代52% LiBr溶液作除湿剂,两者除湿能力相近,51% LiBr/CaCl2再生能力提高了50.8%,成本是52% LiBr的1/2,是很好的替代除湿剂。  相似文献   

4.
对一种溶液除湿真空再生系统进行了实验及模拟研究,实验对比了LiCl溶液及CaBr2∶CaCl2=1∶1(溶质的质量分数比)混合溶液的系统性能,发现两溶液的出口含湿量及COP较为接近,当驱动温度为62℃时,系统COP均为0.65左右。通过模拟研究发现,两种溶液的除湿能力十分接近,混合溶液的COP略高于LiCl溶液。驱动温度84℃时,采用混合溶液的出口含湿量为6.0 g/kg左右,系统COP为0.81左右。进口含湿量越高,系统COP将会越高,得益于混合溶液较小的比热容,其再生溶液的耗热量略低,因此其COP略高于LiCl溶液。在此类溶液除湿系统中,CaBr2∶CaCl2=1∶1混合溶液能较好地替代LiCl溶液,实现低成本,高性能。  相似文献   

5.
氯盐是矿井煤自燃阻化防控技术中较为普遍使用的阻化剂。为提升煤自燃的阻化效果和氯盐阻化剂的性能,选取阜生煤矿煤样,采用程序升温的方法,分别研究了水及浓度均为20%的NaCl溶液、KCl溶液、CaCl2溶液对煤氧化的影响规律,并优选出CaCl2与茶多酚进行复配,对比分析不同复配比例阻化剂对煤氧化的抑制作用。结果表明:水和氯盐溶液使相同温度下煤氧化气体中的O2体积分数升高、CO和CO2体积分数降低,表观活化能增大,对煤氧化产生抑制作用,其中CaCl2溶液的阻化效果最好,平均阻化率约为66.00%,相对于水的平均阻化率提升了24.61%,且阻化效果较为稳定;CaCl2/茶多酚复配阻化剂进一步提升了阻化效果,阻化率随着茶多酚质量分数的增大而增大,其中茶多酚质量分数为6%、CaCl2质量分数为14%时,阻化效果较好,平均阻化率达到了75.37%,且阻化效果比单一CaCl2溶液的阻化效果更为稳定,继续增大茶多酚的质量分数,则阻...  相似文献   

6.
燃煤烟气中SO2对氨法脱碳的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用湿壁塔实验台对燃煤烟气中SO2对氨水溶液[1%~7%(质量)]吸收CO2的影响进行了实验研究,具体分析了不同反应温度(20~80℃)和CO2体积分数(5%~20%)条件下,CO2传质通量及传质系数随SO2浓度和SO2负载量的变化规律。结果表明, SO2浓度由0增至11428 mg·m-3,CO2传质通量及传质系数均有一半左右降幅,而SO2负载量[0.1~0.4 mol SO2·(mol NH3-1]的增加,同样导致CO2传质通量及传质系数明显减小。氨水浓度及反应温度增加可有效提高CO2传质通量和传质系数,相对降低SO2对CO2传质的影响。CO2浓度的增加可明显提高其传质通量,但是CO2的传质系数有所降低。  相似文献   

7.
为了研究CaCl2对聚间二苯砜对苯二甲酰胺(mt-PSA)在DMF中分子构象和形态的影响,采用流变仪测定了mt-PSA/DMF/CaCl2浓溶液的流变行为,并通过乌氏黏度计和激光光散射研究其稀溶液的溶液黏度和高分子形态尺寸。结果表明:CaCl2的加入增大了大分子与溶剂在mt-PSA/DMF/CaCl2浓溶液和其稀溶液中的相互作用,同时CaCl2使大分子链段得到舒展。但大分子的重均分子量没有发生明显的变化,说明CaCl2未使mt-PSA高分子链段发生聚集或者坍塌。  相似文献   

8.
黄志甲  罗良  柯瑞  卓飞飞  钟亮 《化工学报》2019,70(3):913-921
将亲水无纺布PVC复合规整填料作为溶液除湿塔芯体,开展亲水无纺布PVC复合规整填料除湿性能实验,分析在不同空气流量、溶液流量、溶液温度下,亲水无纺布PVC复合规整填料除湿率、除湿效率、传质系数和传热系数的变化。在实验条件下,除湿率、除湿效率、传质系数、传热系数最大值分别为11.05 g·kg-1、86.7%、12.95 g·(m2·s)-1、10.33 W·(m2·℃)-1;与CELdek规整填料和塑料波纹孔板填料相比,亲水无纺布PVC复合规整填料除湿性能最优。对实验数据回归分析,得到亲水无纺布PVC复合规整填料除湿效率实验关联式。  相似文献   

9.
李娜  李艺群  罗春欢  苏庆泉 《化工进展》2018,37(12):4625-4637
围绕以LiBr/H2O为工质对的单级太阳能吸收式制冷循环因对太阳能集热温度要求高而难以实现产业化工程应用的问题,本文提出了一个创新性的技术途径。即以改变工质对的吸收特性为切入点,探索具有优于LiBr/H2O的制冷吸收特性的新工质对。研究发现,CaCl2/H2O溶液具有良好的制冷吸收特性,并从利用CaCl2/H2O的制冷吸收特性出发,筛选出了制冷吸收特性明显优于LiBr/H2O、以廉价CaCl2为主成分的新工质对,即CaCl2-LiNO3(1.8:1)/H2O。系统地测定了其结晶温度、饱和蒸气压、密度、黏度、比热容和比焓,并与LiBr/H2O进行了比较。结果表明,采用CaCl2-LiNO3(1.8:1)/H2O作为单级太阳能吸收式制冷循环的工质对时,在同一制冷工况条件下,其发生温度亦即太阳能集热温度比采用LiBr/H2O的情况低6.9℃,且浓溶液的结晶温度为5.0℃,比发生器温度低69.1℃,比吸收器温度低32.0℃,因而运行时不会出现结晶问题。另外,采用浸泡失重法测定了Q235碳钢和T6紫铜在CaCl2-LiNO3(1.8:1)/H2O中的腐蚀速率,并与LiBr/H2O的情况进行了比较,结果表明其腐蚀性较低,可满足实际工程应用的要求。  相似文献   

10.
袁梦霞  乔秀臣 《化工学报》2017,68(7):2653-2659
缺少含AlCl3、CaCl2和FeCl3的溶液相平衡,使通过蒸发结晶从粉煤灰盐酸浸取液中制备纯净的AlCl3·6H2O变得比较困难。采用等温溶解法研究了三元体系AlCl3+CaCl2+H2O,AlCl3+FeCl3+H2O和CaCl2+FeCl3+H2O在35℃时的相平衡关系,测定了相应的溶解度及密度,并绘制了相应相图及密度-组成图。实验结果表明:三元体系AlCl3+CaCl2+H2O和AlCl3+FeCl3+H2O分别有两条溶解度曲线,两个单盐结晶区,无复盐和共溶体产生,同离子效应导致增加溶液中CaCl2和FeCl3浓度会有效降低AlCl3的溶解度;CaCl2+FeCl3+H2O体系会形成复盐CaCl2·2FeCl3·7H2O;所得35℃相图与25℃相图相比,三元体系AlCl3+CaCl2+H2O和AlCl3+FeCl3+H2O中AlCl3·6H2O结晶区增大,CaCl2·6H2O结晶区转变成CaCl2·4H2O结晶区,CaCl2+FeCl3+H2O体系中CaCl2·2FeCl3·8H2O结晶区转变为CaCl2·2FeCl3·7H2O结晶区。  相似文献   

11.
为了降低燃煤电厂脱硫后烟气中的含湿量,有效回收烟气中的水分及余热,同时解决因饱和湿烟气中水蒸气凝结引起的烟囱腐蚀、"烟囱雨"及"白烟"等问题,分析了湿烟气的热力特点及能量分布的形式,介绍并对比了冷凝法、溶液吸收法及膜法3种较为可行的湿烟气除湿工艺,论述了其技术特点、研究现状、不足及研究方向。研究表明,脱硫后湿烟气中每千克干烟气含湿量约80 g,70%余热以水蒸气潜热的形式存在,冷凝法现阶段相对较为成熟,但吸收法除湿潜力更高、膜法系统简单稳定可靠,具有非常好的应用前景,是烟气除湿工艺研究的趋势;低品位余热的经济利用途径将是燃煤电厂烟气除湿技术的一个重要研究方向。  相似文献   

12.
张昊  申凯  赖艳华  崔琳  董勇 《化工学报》2019,70(6):2269-2278
燃煤电厂排放的烟气中含有大量水蒸气,氯化钙溶液循环除湿技术具有较好的除湿潜力。为了研究吸湿后的氯化钙溶液的再生性能,使用Matlab软件对液滴闪蒸过程进行了数值模拟,并搭建了氯化钙溶液喷雾闪蒸试验台。考察了闪蒸压力,溶液初始温度、浓度、溶液流量等因素对氯化钙溶液再生量的影响。试验结果表明了数学模型的准确性;溶液表面蒸气压和再生压力的差值以及溶液过热度是影响再生量的关键因素;闪蒸出口水蒸气经冷凝后Cl含量不足0.2 mg/L。浓度为35%的溶液在再生温度为60℃、再生压力为10 kPa、流量为0.2 m3/h的情况下,可以实现5 kg/h以上的水分回收量。  相似文献   

13.
季超  刘炜  漆虹 《化工学报》2022,73(5):2174-2182
以环境空气为冷源,采用硅烷接枝的疏水Al2O3陶瓷膜构建膜冷凝器开展烟气脱湿实验。对比了疏水陶瓷膜与传统疏水钢管的冷凝性能;系统考察了烟气流量、烟气温度、吹扫因子、吹扫气温度、跨膜压差等过程参数对疏水陶瓷膜水回收性能的影响;比较了疏水陶瓷膜冷凝器(空冷)与亲水陶瓷膜冷凝器(水冷)的冷凝性能。结果表明,相同水接触角下(120°),多孔陶瓷膜的烟气温降是致密304钢管的1.3~2.5倍,疏水陶瓷膜能有效强化冷凝传热。疏水陶瓷膜的过程水通量随烟气流量、烟气温度、吹扫因子的增加而上升,随跨膜压差、吹扫气温度的增加而降低。过程水回收率随烟气流量、跨膜压差、吹扫气温度的增加而降低,随吹扫因子的增加而增加,随烟气温度的增加先上升,然后趋于稳定,而后下降。实验工况下,疏水陶瓷膜实现了0.6~5.2 kg·m-2·h-1的水通量和7.6%~57.4%的水回收率。低冷却介质流量下,基于水冷的亲水陶瓷膜的烟气冷凝性能更优异;随着冷却介质流量的上升,疏水陶瓷膜的冷凝性能迅速提升,并达到亲水陶瓷膜的性能。疏水陶瓷膜冷凝器在气体脱湿和水分回收领域有广阔的应用前景,将为改善工业过程的“能源-水资源-环境”关系助力。  相似文献   

14.
张昊  董勇  赖艳华  崔琳  杨潇 《化工学报》2021,72(4):2249-2257
为了节省电厂空间,提高设备集成应用,提出了一种溶液除湿与湿电相结合的工艺,使用除湿溶液在阳极板布膜,同时实现除尘与除湿功能。通过湿电平板降膜除湿过程的数值模拟与试验,探究了烟气及溶液参数对水热回收性能的影响。结果显示数学模型能够较好地反映该过程,试验工况下湿电平板降膜最高水、热回收率分别可达37.5%和35%,水蒸气所释放的汽化潜热大部分转移到溶液。除湿过程对于湿电除尘效果几乎没有影响,通过焓湿图分析及可视化比较证明,湿电平板降膜除湿可以实现白烟的削弱甚至完全消除。  相似文献   

15.
烟气中SO2具有高回收价值,在吸附法净化烟气过程中,可采用冷凝法对解吸气中SO2提纯为高纯度液态产品。基于邯钢烧结机烟气活性炭吸附脱硫工艺中的富硫解吸气,进行了冷凝法回收SO2的实验研究。重点考察了SO2气源浓度、压力和冷凝温度等工艺参数对回收率和冷凝排出气SO2浓度的影响。结果显示,回收率随气源浓度、压力的升高和冷凝温度的减小而升高;排出气SO2浓度是压力的-1次幂函数,并随冷凝温度的降低而呈指数型函数降低;设计冷凝器时要以可能出现的最高浓度为设计依据,实际生产时应结合预期回收率确定合理的压力上限,尽量采用以低压策略为基础降低温度的措施提升回收率。研究结果可为烟气吸附脱硫过程中SO2的资源化提供参考。  相似文献   

16.
SO2 in the flue gas has high recovery value. In the process of adsorption purification of flue gas, condensation method can be applied to purify SO2 in the desorbed gas into high-purity liquid product. In this paper, an experimental study on the recovery of SO2 with condensation method was carried out by using the SO2-rich desorbed gas as the feed gas with the concentration of 7%—12% in Handan Steel sintering machine desulfurization process. The effects of process parameters such as the SO2 concentration of the feed gas, condensation pressure and temperature on the recovery rate and the SO2 concentration in the exhaust gas from the outlet of the condenser were investigated. The results show that the recovery rate increases with increasing SO2 concentration in the source gas and condensation pressure, and decreasing condensation temperature. The SO2 concentration in the exhaust gas is a -1 power function of the pressure, and decreases exponentially as condensation temperature decreasing. The highest possible inlet SO2 concentration should be used as the design basis for the condenser. In practice, the reasonable upper limit of pressure should be determined in conjunction with the expected recovery rate, and the strategy of reducing condensation temperature at low-pressure level for increasing the SO2 recovery rate should be adopted. The research results can provide reference for the resource utilization of SO2 in the process of flue gas adsorption and desulfurization.  相似文献   

17.
孟庆莹  曹语  黄延召  王乐  李丽  牛淑锋  漆虹 《化工学报》2018,69(6):2519-2525
将孔径为20 nm的陶瓷膜组装制成膜冷凝器,在水蒸气-空气形成的模拟体系中,采用去离子水作为冷却介质,开展了传递膜冷凝技术在烟气除湿和工业余热综合应用方面的研究。考察了空气流量、冷却水流量、进气温度和冷却水温度对陶瓷内膜和外膜过程通量的影响,并比较了两者水热回收性能。结果表明,过程通量均随进气流量和进气温度的增大而增加。随着冷却水流量的增大,过程通量也不断增加,但是冷却水流量达到一定值后,过程通量基本不再变化。冷却水温度对过程水通量的影响较小,但是热通量对冷却水温度的改变较敏感。冷却水流量的变化对陶瓷外膜的过程通量影响更加显著,表明陶瓷外膜水热回收过程更易受流体边界层的影响。在各实验工况范围内,陶瓷内膜和外膜分别具有更高的热通量和水通量,采用陶瓷膜过程的水通量和热通量最高分别可达到23.1 kg·m-2·h-1和47.5 MJ·m-2·h-1。随着传递膜冷凝技术开发和研究的不断深入,该技术在除湿和工业余热综合应用领域有着广阔的发展空间,将为我国节水、节能以及环境保护等领域的发展提供新的解决思路。  相似文献   

18.
沉浸式汽化器壳程流体传热实验与数值模拟   总被引:1,自引:0,他引:1  
韩昌亮  任婧杰  董文平  张康  毕明树 《化工学报》2016,67(10):4095-4103
沉浸式汽化器广泛应用于LNG接收站调峰系统,其中壳程水浴流动传热特性是影响汽化器换热效率的关键因素。为此,利用可视化实验研究与数值模拟两种手段研究了初始水位高度、烟气进气量和进气温度对水浴传热系数的影响规律。研究结果表明:壳程水浴能够吸收烟气携带的显热和水蒸汽冷凝释放的潜热,排烟温度与水浴平衡温度基本相当;水浴在大量换热气泡诱导作用下,通过围堰溢流形成的循环水流能有效冲刷管壁,减薄流动边界层,起到强化传热作用;初始水位高度和进气量匹配关系影响水浴溢流情况,溢流后水浴传热系数明显增加;燃料量和空气量配比情况影响烟气温度和水浴湍流动能,水浴湍流动能较小时,即使烟气进气温度增加水浴传热系数反而减小。本研究可以为沉浸式汽化器的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号