首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe fouling to poly(vinylidene fluoride) (PVDF) membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration (UF) process. In the paper, fouling behavior and mechanism were investigated, and the low-concentration polyvinyl alcohol (PVA) contained in the sedimentation tank wastewater was found as the main foulant. Consequently, the corresponding cleaning approach was proposed. The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time. Chemical cleaning conditions including the composition and concentration of reagents, cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency. Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO (as oxidant) and 0.1 wt% sodium dodecyl benzene sulfonate (SDBS, as surfactant) at 0.04 MPa for 100 min. In the chemical cleaning method, hypochlorite (ClO) could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles, so that the foulants were removed from the pores and surface of membrane. After eight cycling tests, pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.  相似文献   

2.
Membrane fouling is often considered as a hindrance for the application of microfiltration/ultrafiltration(MF/UF) for drinking water production. A novel process of photocatalytic membrane reactor/dynamic membrane(PMR/DM), operating in a continuous mode under sub-critical flux, was proposed for the mitigation of membrane fouling caused by humic acids(HAs) in water. The mechanism of membrane fouling alleviation with synergistic photocatalytic oxidation and dynamic layer isolating effect was comprehensively investigated from the characterization of foulant evolution responsible for the reversible and irreversible fouling. The results showed that the PMR/DM utilized photocatalytic oxidation to enhance the porosity and hydrophilicity of the fouling layer by converting the high molecular weight(MW) and hydrophobic HA molecules with carboxylic functional groups and aromatic structures into low-MW hydrophilic or transphilic fractions, including tryptophan-like or fulvic-like substances. The fouling layer formed in the PMR/DM by combination of photocatalytic oxidation and DM running at a sub-critical flux of 100 Láhà1ámà2, was more hydrophilic and more porous, resulting in the lowest trans-membrane pressure(TMP) growth rates, as compared to the processes of ceramic membrane(CM), DM and PMR/CM.Meanwhile, the dynamic layer prevented the foulants, particularly the high-MW hydrophobic fractions,from contacting the primary membrane, which enabled the membrane permeability to be restored easily.  相似文献   

3.
《分离科学与技术》2012,47(7):1077-1086
Membrane separation processes appear to be a good alternative in wastewater treatment systems. One of the biggest limitations is the decrease in permeate flux, which is caused mostly by concentration polarization and fouling phenomena. The extent of these phenomena are dependent on the interactions between the different solution compounds, membrane-solution interactions, and the operating conditions. The fouling tendencies of three different commercial tubular ceramic membranes (5, 20, and 50 kDa) during the ultrafiltration of an isolated soy protein (ISP) wastewater were evaluated through determination of the water permeate flux before and after the wastewater ultrafiltration and using Hermia's Model. The wastewater from ISP production is a complex solution characterized by a very high organic load: reaches COD values greater than 18,000 mg · L?1. The wastewater proteins are small molecules (8 to 50 kDa) that could not be removed during the industrial processing. The recovery of these small proteins and their return to the ISP production process would result in both economical and environmental benefits by increasing the final product yield and reducing significantly the wastewater organic load. All the membranes tested presented a large fouling tendency: 65% (5 kDa membrane), 69% (20 kDa membrane) and 76% (50 kDa membrane). The best fit to Hermia's Model for all of the UF membranes was obtained by the complete blocking model.  相似文献   

4.
腐殖酸聚集体对膜蒸馏过程膜污染的作用机理   总被引:4,自引:2,他引:2  
代婷  武春瑞  吕晓龙  王暄 《化工学报》2012,63(5):1574-1583
膜污染是膜蒸馏过程应用于工业水处理中遇到的主要问题之一。选取水体中具有代表性的有机物(腐殖酸)、微溶无机盐(碳酸钙)作为典型污染物,研究有机腐殖酸聚集体对于膜蒸馏过程膜污染进程的影响规律,探讨天然有机物-无机微溶盐混合水体中腐殖酸聚集体对于无机盐结晶过程的控制机理。结果表明:膜蒸馏通量的衰减大致可分为由滤饼层的形成造成的不可恢复部分以及由浓差极化、膜孔“半润湿”而造成的可部分恢复的通量降低。Ca2+通过加速腐殖酸分子的聚集过程,使表面负电性降低的腐殖酸聚集体率先吸附在聚偏氟乙烯中空纤维膜内表面,形成有机基质污染层;碳酸钙在有机腐殖酸聚集体的诱导下在膜内表面异相成核,最终成长为稳定的晶体。腐殖酸聚集体为无机盐晶体在疏水性膜内表面的生长提供了异相成核的基础。可通过控制污染水体中有机物的含量控制微溶碳酸钙在膜内表面成核及生长,实现控制其在膜内表面附着进而诱发疏水膜发生亲水化的过程。  相似文献   

5.
《分离科学与技术》2012,47(12):1823-1834
Characterization of membrane pore size by experimental methods is usually done by the determination of the rejection of polymeric molecules having a range of sizes such as PEG. These experiments are affected by concentration polarization, which can lead to erroneous interpretation of the results, mainly because the concentration and the permeate flux change along the membrane surface. Additionally, experimental methods alone are insufficient to obtain the membrane pore size. To improve the current approach, numerical methods are used to understand mass transport limitations in rejection experiments and to predict the membrane pore size. In the current study, the results show that the ultrafiltration membrane has a MWCO of 20 kDa, different from the value set by the manufacturer (30 kDa). For the experimental conditions, concentration dependent viscosity and osmotic pressure do not influence the permeate flow rate or rejection. Moreover, the membrane pore size was found to be 2.59 nm. This value was determined comparing rejection values obtained by numerical and experimental results. Numerical analysis is also important to characterize the flow and mass transport in each point at membrane surface.  相似文献   

6.
《分离科学与技术》2012,47(12-13):1753-1771
Abstract

In this paper, fouling of thin-channel and tubular ultrafiltration (UF) membrane modules by dilute suspensions have been studied theoretically. A hydrodynamic analysis of fluid-particle system is presented to describe the role of dilute suspensions in fouling such membrane modules. The present analysis assumes that for very dilute suspensions, only inertial effects-are-important for particulate fouling. Particle trajectory history and hence the fouling is computed from equations of motion for the particles, where the fluid-flow is given by the full solution of Navier-Stokes equation. To simulate the flux decline due to build up of foulant layer on the membrane walls, it is assumed that the deposition of particles on the membrane surface at discrete time interval is a steady state event and thus formulating the fouling problem as an infinite series of successive steady state events. Present simulation results indicate that inertial effects are important and under positive wall permeation flux conditions, particles are encouraged to migrate towards the membrane wall causing so-called ‘membrane fouling’ by the particulars.  相似文献   

7.
Polyethersulfone (PES) ultrafiltration (UF) membranes with and without surface‐modifying macromolecules (SMMs) were prepared and characterized in terms of the mean pore size and pore‐size distribution, surface porosity, and pore density. The results demonstrated that both the mean pore size and the molecular weight cutoff (MWCO) of the SMM‐modified membranes are lower than those of the corresponding unmodified ones. Membrane fouling tests with humic acid as the foulant indicated that the permeate flux reduction of the SMM‐modified membranes was much less than that of the unmodified ones. Therefore, fouling was more severe for the unmodified membranes. Moreover, the dry weight of the humic acid deposited on the membrane surface was considerably higher for the unmodified membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3132–3138, 2003  相似文献   

8.
超滤膜污染的成因及模型表征研究进展   总被引:1,自引:0,他引:1  
陈安稳  时翔云 《广东化工》2012,39(11):153-154
文章从超滤膜的理化性质、分离的料液性质和运行操作条件三方面介绍了超滤膜污染的成因,阐述了膜污染的数学模型研究概况,并对膜污染未来的研究方向进行了展望。  相似文献   

9.
A novel fluorescence‐based approach is proposed for modeling, predicting, and optimizing different fouling dynamics in an ultrafiltration (UF) process for drinking water treatment. Principal component analysis (PCA) was used to extract information in terms of principal components (PCs), related to major membrane foulant groups, from fluorescence excitation–emission matrix measurements captured during UF of natural river water. The evolution of PC scores during the filtration process was then related to membrane fouling using dynamic balances of latent variable values (PC scores). This approach was found suitable for forecasting fouling behaviors with good accuracy based solely on fluorescence data collected 15 min from the start of the filtration. The proposed approach was tested experimentally through model‐based optimization of backwashing times with the objective of minimizing the energy consumption per unit amount of water produced during the filtration process. This approach was also useful for identifying fouling groups contributing to reversible and irreversible fouling. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
BACKGROUND: Bipolar membrane electrodialysis (BMED) has been widely applied in the recovery/production of organic acids and in the treatment of wastewater containing ammonium sulfate, sodium nitrate, sodium acetate and ammonium nitrate. However, membrane fouling is still one of the major problems in the electrodialysis process. Since calcium and amino acid are present naturally in fermentation wastewater, this study was carried out to determine the effects of calcium and amino acid on membrane fouling when simulated fermentation wastewater containing ammonium sulfate was treated by BMED. RESULTS: Calcium formed a scale on the cation exchange membrane (CEM) surface in contact with the base cell, but this had no significant adverse effect on the BMED performance. Amino acid, however, caused CEM fouling of the inner membrane, which hampered the BMED process. The coexistence of calcium and amino acid aggravated the membrane fouling, as observed morphologically on the CEM surface on the base cell side. Elemental mapping analysis showed that the membrane foulant was composed of calcium hydroxide and amino acid. CONCLUSION: The CEM fouling caused by calcium and that due to amino acid, which were distributed differently on the membrane, had different effects on the BMED performance. The coexistence of amino acid and calcium deteriorated the CEM fouling during BMED. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
Severe fouling to poly(vinylidene fluoride) (PVDF) membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration (UF) process. In the paper, fouling behavior and mechanism were investigated, and the low-concentration polyvinyl alcohol (PVA) contained in the sedimentation tank wastewater was found as the main foulant. Consequently, the corresponding cleaning approach was proposed. The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time. Chemical cleaning conditions including the composition and concentration of reagents, cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency. Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO (as oxidant) and 0.1 wt% sodium dodecyl benzene sulfonate (SDBS, as surfactant) at 0.04 MPa for 100 min. In the chemical cleaning method, hypochlorite (ClO-) could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles, so that the foulants were removed from the pores and surface of membrane. After eight cycling tests, pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.  相似文献   

12.
A technique for studying fouling in ceramic membranes using the energy dispersive x-ray spectroscopy capability of an electron microscope is described. The location and amount of foulant within the membrane are presented on a digital x-ray map showing elements constituent to or stained on the foulant.

Fouling of alumina membranes during filtration of the protein hemoglobin has been studied as a function of filtration time, pH, and membrane pore size. After each filtration run, the protein within a piece of the membrane was stained with phosphotungstic acid and located on a digital map of either phosphorus or tungsten.

For a 0.2 μm pore size membrane, time dependent fouling was observed consistent with an observed flux decline within the first few minutes of filtration. A pH dependence was also observed indicating much greater fouling at pH 6.9 near the protein isoelectric point than at pH 8.5. This observation is consistent with pH dependent adsorption, flux, and rejection studies. No internal fouling was observed for a 40 Å pore size membrane, which is consistent with the size of hemoglobin in solution being larger than the 40 Å pores and with the fact that the 40 Å membrane can be more easily cleaned after use than can the 0.2 μm membrane.  相似文献   

13.
The mechanistic modeling of biodiesel production process in membrane reactor with the consideration of chemical reaction, phase equilibrium, and ultrafiltration is important for the membrane reactor design. In part II of this work, the chemical and phase equilibrium (CPE) model for crude palm oil transesterification reaction in the membrane reactor developed in part I is extended to an integration of CPE with modified Maxwell–Stefan model, which considers multicomponent mass transport phenomena of concentration polarization and intramembrane. A good fit of simulated permeate fluxes and apparent solute rejection to the experimental data shows that the model has a good prediction capability. Reversible fouling was found to be the major fouling and no pore plugging was observed. Simulation results verified that micelles were retained by the membrane at CPO:MEOH molar ratio of 1:24 and catalyst concentration of 0.5 wt %. However, phase inversion happened when catalyst concentration of 0.05 and 0.1 wt % were used. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1981–1996, 2015  相似文献   

14.
Membrane fouling is a complex phenomenon induced by various chemical or physical factors. Several models can be used in order to predict flux. In this paper, models extracted from the literature are compared with experimental data collected in our laboratory during ultrafiltration of bentonite suspensions for three different cell designs (a classical plane unit and two annular units, one fitted with a tangential inlet inducing a swirling decaying flow, the other generating a pseudo axial flow). Mass transfer coefficients are measured by means of an electrochemical method for the two axial cell designs and are further included in the gel model predicting the limiting ultrafiltration flux. In ultrafiltration, the particles retained by the membrane will accumulate in the immediate vicinity of its surface to form a layer of higher particle concentration involved in the gel model. This concentration is also determined experimentally. Nevertheless, the gel model is not able to predict the permeation flux during ultrafiltration of bentonite suspensions in different cell designs. A modification of the erosion model, which takes into account the cell configuration, is also presented.  相似文献   

15.
This study investigates the effect of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Drastic flux reduction was observed at high initial flux and/or low cross-flow velocity. A limiting flux existed during BSA filtration, beyond which membrane flux cannot be sustained. Further increase in pressure over the limiting value did not enhance the stable flux. The rate and extent of BSA fouling were also strongly dependent on the feedwater composition, such as BSA concentration, pH, and ionic strength. Foulant concentration had no effect on the stable flux, although the rate approaching to the stable flux increased proportionally with increasing foulant concentration. Fouling was most severe at the isoelectric point of BSA (pH 4.7), where the electrostatic repulsion between foulant molecules is negligible. Membrane fouling became less severe at pHs away from the isoelectric point. Increasing ionic strength at pH 3.0 promoted severe fouling likely due to electric double layer (EDL) compression. On the other hand, the flux behavior was insensitive to salt concentration at pH 4.7 due to the lack of electrostatic interaction. At a solution pH of 5.8, effect of ionic strength on long-term flux behavior was directly opposite to that on the transient behavior. While the long-term flux was lower at higher ionic strength due to EDL compression, the transient behavior was also affected by the BSA retention of the membrane.  相似文献   

16.
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride)(PVDF)membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34-43 L·m~(-2)·h~(-1),respectively. The critical flux and fouling resistances indicated that the fouling propensity increases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious irreversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of40.5 L·m~(-2)·h~(-1).On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling performance when permeate flux was set to 40.5,48 and 60 L·m~(-2)·h~(-1).  相似文献   

17.
研究了电场对超滤膜污染和去除性能的影响。结果表明,原水中的腐植酸在电场中发生电泳迁移,减少了向膜表面的移动,同时发生凝聚现象,沉积在膜表面形成疏松的滤饼层,有效的减缓了膜污染。经过与普通超滤膜过滤的平行试验比较得出,附加电场后对羟苯甲酮(BP-3)的去除率提高了70%~100%。同时发现,吸附是大孔径低压膜去除小分子BP-3的主要作用,水中腐植酸的存在对超滤去除BP-3有一定的促进作用。通过稀HCl、NaOH溶液浸泡和水力冲洗,可有效消除膜污染,使得膜过滤通量得到恢复。  相似文献   

18.
喻胜飞 《过滤与分离》2006,16(4):17-19,48
考察了N-乙酰化壳聚糖超滤膜运行过程中分离介质浓度、pH值、膜面流速、操作压力和操作时间对膜污染的影响。实验结果表明:分离介质浓度越高、pH值越低、膜面流速越小、操作压力越高和操作时间越长,膜受到的污染越严重;当印染废水色度120ppm以下,pH值6.5左右、膜面流速0.8m/s左右、操作压力0.6MPa以下,可使膜在五天时间内的污染度降低到20%。  相似文献   

19.
The fouling, in particular the organic fouling of anion exchange membranes (AEMs), is a serious problem in electrodialysis (ED). In this paper, we attempted to improve the antifouling potential of AEM by surface modification with polydopamine (PDA). The antifouling potential was evaluated by the transition time, i.e. the time elapsed before fouling took place, using sodium dodecyl benzene sulfonate (SDBS) as a model foulant. The negative surface charge density, hydrophilicity and roughness of the membrane surface were increased with increasing dopamine concentration in the modification solution. The increases in negative surface charge density and hydrophilicity increased the antifouling potential, while the increase in surface roughness decreased the antifouling potential. Consequently, the optimum modification condition was the immersion into a 0.1 kg/m3 dopamine aqueous solution at pH 8.8 for 24 h. Under this condition, the antifouling potential of AEM was sufficiently improved. It was shown by theoretical analysis of the fouling data that the surface modification with PDA prevented the adsorption of SDBS micelles and improved the antifouling potential. Furthermore, it was experimentally confirmed that the modified membrane was highly stable.  相似文献   

20.
超滤是一种高效的水处理技术,近年来被广泛应用于工业废水处理、生活污水回用、海水淡化预处理等领域。然而,超滤长期运行会造成膜污染。本文采用了在线混凝结合超滤工艺,使用不同形态的铝系混凝剂(硫酸铝、氯化铝或聚合氯化铝),处理含有不同溶解性有机质组分(腐殖酸、牛血清白蛋白和高岭土)的模拟原水,研究不同铝形态、不同组分及其相互作用对超滤膜污染过程的影响。本研究建立了流量衰减模型模拟膜污染过程,结合衰减全反射红外光谱(IR-ATR)和多变量曲线分辨-交替最小二乘法(MCR-ALS)的数据处理方法对膜上的多种污染物进行定性和定量分析。结果表明硫酸铝和氯化铝混凝剂均可明显提高膜比通量,减缓膜污染。该工艺混凝剂投加量低于常规处理工艺即可明显减缓膜污染。混凝剂投加量为0.4mg/L时,氯化铝混凝效果较好,混凝剂投加量为2.4mg/L时,硫酸铝混凝效果较好。低投加量(0.2mg/L、0.4mg/L)下,PAC对缓解膜污染程度不明显,反而加重膜污染。牛血清白蛋白对超滤膜的污染比腐殖酸严重。因为牛血清白蛋白的存在大大降低了混凝的效果,阻碍疏松滤饼层的形成。向原水中投加硫酸铝混凝剂,膜污染主要发生在过滤前期,即膜孔窄化、堵塞。过滤后期,膜表面形成疏松滤饼层,对膜通量影响不大,膜污染减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号