首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
《Ceramics International》2017,43(9):7329-7337
Commercial fluorine-doped tin oxide (FTO) thin films were subjected to laser annealing coupled with ultrasonic vibration (48 kHz and 350 W). The effects of ultrasonic vibration, laser fluence and defocusing amount were systematically studied. Laser annealing could result in grain growth or damage of the FTO layer, and introducing ultrasonic vibration during laser annealing could effectively enhance the film compactness, decrease the film thickness and refine the grains in the film. As a result, the optical and electrical properties of the ultrasonic-vibration-assisted laser-annealed FTO films were significantly improved by using low laser fluences and high defocusing amounts, and were slightly deteriorated when high laser fluences and low defocusing amounts were adopted. The results indicated that the film obtained by ultrasonic-vibration-assisted laser annealing using a laser fluence of 0.6 J/cm2 and a defocusing amount of 2.0 mm had the best overall photoelectric property with an average transmittance of 84.1%, a sheet resistance of 8.9 Ω/sq and a figure of merit of 1.99×10–2 Ω–1, outperforming that of the film obtained by pure laser annealing using the same experimental parameters. The present study confirms the efficacy of ultrasonic-vibration-assisted laser annealing in optimizing performance of FTO films.  相似文献   

2.
《Ceramics International》2016,42(6):7246-7252
Aluminum-doped zinc oxide (AZO) layers were deposited on polyethylene terephthalate (PET) flexible substrates and optimized by laser annealing using a 532 nm nanosecond pulsed laser. Effects of overlap rates, i.e. laser spot overlap rate (SOR) and laser scan line overlap rate (LOR), on AZO/PET films were investigated by X-ray diffractometer (XRD), scanning electron microscope (SEM), UV–visible transmittance spectra and digital four-point probe instrument, respectively. Laser annealing could greatly enhance grain crystallinity, increase crystallite size and avoid damage to the PET flexible substrates, thus effectively enhance transmittance and conductivity of the films. The results showed that the AZO/PET film annealed by using 85% SOR and 60% LOR presented the highest average visible transmittance of 76.2% and the lowest resistivity of 1.95×10−3 Ω cm, which respectively improved by approximately 23% and 75% compared to those of the as-deposited AZO/PET film. This work may be of great importance from the viewpoint of performance optimization of transparent conductive oxide (TCO) flexible films.  相似文献   

3.
In the present study, we fabricated fluorine-doped tin oxide (FTO) films with different sheet resistances (~10?Ω/□, ~6?Ω/□, and ~3?Ω/□) prepared through the adjustment of deposition time during the horizontal ultrasonic spray pyrolysis deposition (HUSPD) and investigated the effect of electrochromic (EC) performances with different sheet resistances of the FTO films used as transparent conducting electrodes. The results demonstrated that, owing to the increased electrochemical activity, the decrease of sheet resistance accelerated switching speeds of the EC devices. However, for the coloration efficiency (CE), the FTO films with the optimum sheet resistance of ~6?Ω/□ exhibited the highest value as compared to the other samples. The improvement of the CE value can be mainly attributed to high transmittance modulation by the uniform surface morphology of the FTO films to reduce interfacial light-scattering between the WO3 films and FTO films. Therefore, our results provide a valuable insight into the improvement of the performance of the EC devices using the optimum sheet resistance (~6?Ω/□) of the FTO films.  相似文献   

4.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   

5.
Using the magnetic sputtering technique, the SnO2/Ag/SnO2 tri-layer transparent films were fabricated on float glasses successfully. Compared with the commercial FTO (F-doped SnO2) film, the SnO2/Ag/SnO2 tri-layer films have higher visible-light transmittance and better conductivity. The total thickness of the SnO2/Ag/SnO2 films is one third of the commercial FTO film leading to the high visible-light transmittance. The high carrier concentration of the SnO2/Ag/SnO2 films contributes to the tri-layer films’ low resistivity. In addition, to further improve the performance of the SnO2/Ag/SnO2 tri-layer films, samples were annealed under different temperatures. The results illustrate that the lowest sheet resistance (5.92 Ω/sq) and the highest visible-light transmittance (87.0%) were obtained after annealing at 200 °C. Furthermore, the thermal stability of the films could be enhanced by a multi-step annealing process due to the recrystallization effect.  相似文献   

6.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   

7.
High-quality polycrystalline ZnO thin films were deposited onto alkali-free glasses at a temperature of 300°C in air ambience by combining sol–gel spin coating and KrF excimer laser annealing. The effects of laser irradiation energy density on the crystallization, microstructure, surface morphology, and optical transmittance of as-prepared ZnO thin films were investigated and compared to the results of thermally annealed ZnO thin films. The crystallinity level and average crystallite size of laser annealed ZnO thin films increased as laser energy density increased. The crystallinity levels and average crystallite size of excimer laser annealed (ELA) thin films were greater than those of the thermally annealed (TA) thin films. However, laser annealed thin films had abnormal grain growth when irradiation energy density was 175 mJ/cm2. Experimental results indicated that the optimum irradiation energy density for excimer laser annealing of ZnO sol–gel films was 150 mJ/cm2. The ELA 150 thin films had a dense microstructure, an RMS roughness value of 5.30 nm, and an optical band gap of 3.38 eV, close to the band gap of a ZnO crystal (3.4 eV).  相似文献   

8.
Nano-clusters blind films of phenyl C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT) were deposited on fluorine doped tin-oxide (FTO) substrate by spin coating and applied as counter electrodes instead of platinum for a new FTO/TiO2?+?K30 dye-sensitized solar cell. The photovoltaic parameters of the fabricated solar cell; open circuit voltage, short circuit current, output power and fill factor, were studied under various light intensities in the range 20:110?mW?cm?2. An impedance spectroscopy study was also performed in a wide frequency range (5?kHz–1?MHz) to study the electron transport properties of the solar cells. The capacitance–voltage of the prepared DSSC is characterized by two parts: positive values of capacitance at low frequency range, f?≤?100?kHz and negative capacitance i.e., an inductive behavior, in higher frequency range f?≥ 300 kHz Conducting polymer electrode based on PCBM:P3HT/FTO can be used as a counter electrode in a DSSC.  相似文献   

9.
We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side).  相似文献   

10.
《Ceramics International》2023,49(2):2419-2426
We investigated the characteristics of F-doped SnO2 (FTO)/Ag/FTO films prepared using thermal evaporation at room temperature for the application of the as-formed films in transparent thin film heaters (TFHs) of automobiles. To optimize the electrical and optical properties of the FTO/Ag/FTO multi-layer, the figure of merit (FoM) values of the FTO/Ag/FTO multi-layers were compared as a function of the thickness of the Ag and FTO layers. The sheet resistance and optical transmittance of the FTO/Ag/FTO multi-layer were primarily affected by the Ag inter-layer and bottom/top FTO thicknesses, respectively. At optimized Ag (10 nm) and FTO (40 nm) thicknesses, we fabricated a FTO/Ag/FTO electrode with a sheet resistance of 8.00 Ohm/square, an optical transmittance of 83.04 % at a visible wavelength (400–800 nm) and a FoM value of 19.49 Ohm-1. The TFHs comprising the optimal FTO/Ag/FTO electrode exhibited a saturated temperature of 117 °C at a low operating direct current of 6 V, owing to the low sheet resistance. In addition, the FTO/Ag/FTO-based TFHs exhibited thermally stable performances owing to the stability of the bottom and top FTO electrodes. The performance of the FTO/Ag/FTO-based TFHs demonstrated that the thermally evaporated FTO/Ag/FTO multi-layer is a promising, stable, and transparent electrode material for application in the front window TFHs used in automobiles.  相似文献   

11.
The photoelectric and pyroelectric properties of Sn2P2S6 films were studied by a dynamic method under excitation by periodic rectangular laser beam pulses (λ = 6328 Å). In this case, an appearance of the nonstationary photoelectric response in the films under visible light irradiation (extrinsic excitation) was observed. It was found that temperature dependence of the unsteady current is connected to features of spontaneous polarization behaviour in Sn2P2S6 thin films. A nature of the nonstationary photoelectric response existence due to an electric field of the potential barrier near an interface is discussed.  相似文献   

12.
《Ceramics International》2017,43(13):10288-10298
F-doped SnO2 (FTO) thin films have been prepared by sputtering SnO2-SnF2 target in Ar+H2 atmosphere. The effects of H2/Ar flow ratio on the structural, electrical and optical properties of the films were investigated at two substrate temperatures of 150 and 300 °C and two base pressures of 3.5×10−3 and 1.5×10−2 Pa. The results show that introducing H2 into sputtering atmosphere can lead to the formation of a FTO film with a (101) preferred orientation and produce oxygen vacancy (VO) at lower H2/Ar flow ratios, but SnO phase at higher H2/Ar flow ratios in the films. Accordingly, the resistivity of the films first decreases and then increases, but the transmittance decreases continuously with increasing H2/Ar flow ratio. When H2/Ar flow ratio is increased above a certain value, more amorphous SnO phase forms in the films, resulting in a big decrease in conductivity, transmittance, and band gap (Eg). Increasing substrate temperature can increase the Hall mobility due to the improvement of film crystallinity, but decrease the carrier concentration due to outward-diffusion of fluorine in the films. At a base pressure of 3.5×10−3 Pa, high substrate temperature (300 °C) can hinder the formation of SnO and thus improve the transparent conductive properties of the films. At a base pressure of 1.5×10−2 Pa, the range of H2/Ar flow ratio for forming the SnO2 phase and hence for obtaining high transparent conductive FTO films is widened at both substrate temperatures of 150 and 300 °C.  相似文献   

13.
《Ceramics International》2017,43(4):3900-3904
Thin films comprising 0.5 mol% aluminum-doped zinc oxide (AZO) were prepared on glass substrates by a spin-coating method for transparent conducting oxide (TCO) applications. UV laser was selected for the annealing of AZO thin films, due to the well matched energy bandgap between UV laser and AZO films. After the rapid thermal annealing (RTA) process, post UV laser annealing was carried out by varying the scan speed of the laser beam, and the effects of laser annealing on the structural, morphological, electrical, and optical properties were analyzed. The results indicated that UV laser annealing based on various scan speeds affects the microstructure, sheet resistance, and optical transmittance of the AZO thin films, compared with those of the only RTA processed thin films. X-ray diffraction (XRD) analysis showed that all films that preferentially grew normally on the substrate had a (002) peak. The optical transmittance spectra of the laser/RTA annealed AZO thin films exhibited greater than 83% transmittance in the visible region. Also, the sheet resistance (1.61 kΩ/sq) indicated that optimized UV laser annealing after the RTA process improves film conductance.  相似文献   

14.
TiO2 thin films were prepared by RF magnetron sputtering onto glass substrates and tungsten was deposited onto these thin films (deposition time 15-60 s) to form W-TiO2 bi-layer thin films. The crystal structure, morphology, and transmittance of these TiO2 and W-TiO2 bi-layer thin films were investigated. Amorphous, rutile, and anatase TiO2 phases were observed in the TiO2 and W-TiO2 bi-layer thin films. Tungsten thickness and annealing temperature had large effects on the transmittance of the W-TiO2 thin films. The W-TiO2 bi-layer thin films with a tungsten deposition time of 60 s were annealed at 200 °C-400 °C. The band gap energies of the TiO2 and the non-annealed and annealed W-TiO2 bi-layer thin films were evaluated using (αhν)1/2 versus energy plots, showing that tungsten thickness and annealing temperature had major effects on the transmittance and band gap energy of W-TiO2 bi-layer thin films.  相似文献   

15.
Highly transparent and conducting polypyrrole–(PPy–N) and polyaniline–nylon 6 (PAN) composite films could be easily obtained by immersing nylon 6 films containing pyrrole or aniline into an oxidant solution such as aqueous FeCl3 solution or aqueous (NH4)2S2O8 solution containing HCl. The conductivity, transmittance, and mechanical properties of these composite films were affected by the preparative conditions. The maximum conductivity and transmittance of the PPy–N composite films were 10?3 S/cm and about 75% at 550 nm, and in the case of the PA–N composite films, 10?2 S/cm and 75%, respectively. The morphology of PPy–N and PA–N composite films depended on the polymerization conditions, which might be due to the difference in the polymerization speed of pyrrole or aniline in polymer matrices. These PPy–N and PA–N composite films exhibited good environmental stability and excellent mechanical properties. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The low temperature evolution of point defects induced in SiC by ion irradiation was investigated by deep level transient spectroscopy. The defects were introduced by irradiation with a 7.0 MeV beam of C+ ions at a fluence of 6 × 109 cm? 2. Annealing was then performed in the temperature range of 330–400 K in order to study the change in point defect structure with temperature. The low temperature annealing performed was observed to induce a change in the produced defects. The deep levels related to the Sx (EC ? 0.6 eV) and S2 defects (EC ? 0.7 eV) recovered with annealing while, simultaneously, a new level, S1 (EC ? 0.4 eV), was formed. The activation energy of the S1 defect is 0.94 eV, while the annealing of both the Sx and S2 levels occurred with activation energy of 0.65 eV.  相似文献   

17.
Fe-doping is an effective way to improve physical performances of piezoelectric and ferroelectric materials. Under such circumstances, x mol% (x?=?0.0, 1.0, 1.5, 2.5) Fe-doped 0.72Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3–0.10SrTiO3 (BNT–BKT–ST–xFe) thin films were prepared by sol-gel method and the relationships between the content of Fe and electromechanical properties of the films were studied. The BNT–BKT–ST–1.0Fe thin films exhibit the best electromechanical properties, whose Smax/Emax, Wrec, η, Pmax, Prem and εr of are 68.00?pm/V, 20.34?J/cm3, 65.17%, 71.5?μC/cm2, 14.8?μC/cm2, 868 respectively. These results indicate that BNT–BKT–ST–1.0Fe thin films are promising for applications for advanced piezoelectric materials and capacitors with high energy-storage density.  相似文献   

18.
Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency.  相似文献   

19.
Optical characterization methods, like spectrophotometry at UV–vis-NIR wavelengths and prism-coupler method, were applied to polycrystalline Pb(ZrxTi1?x)O3 thin films at various thicknesses. Thin films were deposited at room temperature by pulsed laser deposition on MgO (1 0 0) substrates and post-annealed at different temperatures. X-ray diffraction and atomic force microscopy were used to characterize the crystal structure and surface morphology of the thin films, respectively.Well oscillating transmission with a sharp fall near the absorption edge was found in films with high orientation and low surface roughness. Changes in the surface morphology and crystal orientation were found to modulate optical interference maxima and minima of the transmittance spectra and to increase the width of the TE0 mode (Δβ  0.06) indicating an increase in the scattering losses of the films. Single-phase oriented films had sharpest coupling values (Δβ  0.005) of the TE0 mode.  相似文献   

20.
Influences of thermal annealing on structural, optical and morphological properties of the tantalum pentoxide (Ta2O5) thin films were investigated and anti-reflective performances were discussed in detail. The Ta2O5 thin films were deposited onto Corning Glass (CG), Si, GaAs and Ge substrates by radio-frequency (RF) magnetron sputtering technique using Ta2O5 ceramic target. The obtained secondary ion mass spectroscopy (SIMS) analysis results showed that uniform Ta and O distribution have formed throughout depth of the films deposited on substrates. The X-Ray diffraction (XRD) results indicated that the annealed Ta2O5 thin films at 100, 200, 300 and 500?°C have exhibited amorphous (a-Ta2O5) characteristic. The increased temperature has resulted in increasing the surface roughness from 0.67 to 1.60?nm. The optical transmittance of the annealed thin films has increased from 70.85 to 80.32% with increasing temperature. Spectroscopic ellipsometer (SE) measurement results demonstrated that the increased temperature has increased the refractive index of the Ta2O5 thin film from 2.11 to 2.18. The Ta2O5 thin film has reduced the average optical reflectivity of the Si, GaAs and Ge substrates by 78, 55 and 70%, respectively. In addition, thermal annealing process has decreased the optical reflectivity of the film. The obtained experimental results showed that single-layer Ta2O5 thin films can be used as anti-reflective layer in optical and optoelectronic applications. The best optical transmittance and anti-reflective performance were obtained at the annealing temperature of 500?°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号