首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用重结晶法、氧化还原法对尾渣十水碳酸钠中水合肼、NaCl等进行除杂试验研究,结果表明:重结晶法在适宜的固液比为2.5∶1时,水合肼的除去率达34.1%,NaCl的除去率达52.97%。氧化还原法除杂中次氯酸钠的适宜添加量为0.108g,即为理论量的120%,水合肼的除去率达80%,NaCl的除去率为40.68%;双氧水适宜的添加量为0.024g,水合肼的除去率达66.67%,NaCl的除去率为38.98%。试验为十水碳酸钠综合利用提供了基础数据。  相似文献   

2.
针对除去ADC发泡剂固废物十水碳酸钠中少量水合肼的难题,采用重结晶法提纯副产物十水碳酸钠,充分回收利用其中的碳酸钠.  相似文献   

3.
以高分子材料合成工业废含锂催化剂为原料,通过化学方法提纯回收碳酸锂。首先对原料进行原子吸收分析,进而通过定性、定量摸索实验,最终得到碳酸锂产品,并采用酸碱滴定法检测碳酸锂纯度。重点研究了搅拌速度、加料速度、反应温度和饱和碳酸钠用量对提纯工艺的影响。最优工艺条件:加料速度为60滴/m in,反应温度为70℃,饱和碳酸钠溶液与原料质量比为3∶1。经检测,产品纯度完全可达工业品纯度要求,锂元素回收率可达91.68%。工艺简单可行,且实现了对废催化剂的综合处理和循环利用,具有较好的市场前景。  相似文献   

4.
废加氢催化剂中含有大量的有机污染物和金属元素,如钼、钒、镍和铝,若处理不当,会造成严重的生态污染和资源浪费。本研究采用空气焙烧-碳酸钠浸出法处理废弃加氢催化剂以回收其中的钼和钒。通过热力学计算可知低温碳酸钠浸出可以实现废催化剂中钼、钒与铝、镍的分离。单因素实验考察了空气焙烧温度、碳酸钠浓度、反应时间、浸出温度、液固比等工艺条件对钼和钒浸出率的影响。实验结果表明,在焙烧温度500℃,碳酸钠浓度4 mol/L,浸出温度80℃,反应时间90 min,液固比为20:1的条件下,钼和钒的浸出率可分别达到98.02%和94.36%。为了最大限度地回收钼和钒,采用二段逆流浸出流程处理废加氢催化剂,可将钼和钒的浸出率维持在98%和97%。浸出渣中主要含有Al2O3, NiO和NiAl26O40,而绝大部分钼和钒被转移至浸出液中。  相似文献   

5.
以工业固废赤泥、粉煤灰以及盐酸等为原料,采用酸浸的工艺制备聚硅氯化铝铁絮凝剂。初步研究了该絮凝剂的生产工艺条件及产品对皮革废水的絮凝效果。实验结果表明:制备聚硅氯化铝铁絮凝剂的最佳工艺条件为粉煤灰和赤泥的质量比为1∶2,焙烧温度为850 ℃,液固体积质量比为5 mL/g,在此条件下原料中铁的最大浸出率为73.9%。絮凝剂对皮革废水的最佳投放量为250 mg/L,产品对皮革废水COD、SS的去除率可高达73.91%、97.86%,处理过的水透光度高。  相似文献   

6.
采用碱溶法分离回收燃煤电厂废SCR脱硝催化剂中的载体成分TiO2,通过正交实验考察了NaOH浓度、反应温度、固液比和转速对碱溶法回收TiO2过程中主要杂质W浸出分离、W和Ti浸出率的影响规律及浸出渣物相的变化规律,所得含钛浸出渣经20% H2SO4溶液或20% HCl溶液洗涤、煅烧回收TiO2。结果表明,反应温度对杂质W浸出影响最明显。回收Ti元素的最优条件为反应温度110℃及NaOH浓度40wt%、固液比1/5 g/mL、转速400 r/min,该条件下废SCR脱硝催化剂中W的脱除率达87.5%,Ti的溶出率仅为0.04%,浸出液中W/Ti浓度比为210。经H2SO4处理后生成锐钛型TiO2,经HCl处理生成金红石型TiO2,二者纯度均大于98%,实现了TiO2晶体的可控制备。  相似文献   

7.
刘国伟  崔亮  王辉 《应用化工》2023,(9):2593-2595+2600
采用热降解处理工业固废脲醛树脂,研究处理条件对树脂降解效果的影响。结果表明,在强酸性(pH≤3)处理环境下,控制甲醛溶液和固废脲醛树脂质量比为4∶1,热处理温度为70~85℃,渗透剂添加量为3%时,树脂的降解率可达99%。继续将其用于脲醛树脂合成用起始原料,在本实验工艺条件下,添加量为甲醛溶液质量5%时,工业试验生产的7层胶合板胶合强度、甲醛释放量等指标可满足国标要求。  相似文献   

8.
《化工设计通讯》2017,(3):99-101
采用硫酸铵焙烧-水浸法从二次铝灰中回收Al。确定并优化了硫酸铵焙烧-水浸法从二次铝灰中提取Al的工艺参数条件,适宜焙烧条件:(NH_4)_2SO_4与二次铝灰中Al的摩尔比为5∶1,焙烧时间为90min,焙烧温度为425℃;适宜浸出条件:浸出温度为85℃,浸出时间为60min,液固比为3.5∶1。在优化的工艺条件下,铝的浸出率可达85.17%。  相似文献   

9.
太阳能硅片切割废砂浆的分离及回收研究   总被引:2,自引:0,他引:2  
以太阳能硅片切割废砂浆为原料,采用固液分离、酸溶和碱溶提纯等方法,除去废砂浆中的铁及不锈钢粉等杂质,回收聚乙二醇、硅和碳化硅微粉。结果表明,以水为溶剂,按液固体积质量比(mL/g)为10∶1、常温下搅拌10min溶出废砂浆中的聚乙二醇,精馏回收;用盐酸处理废砂浆中铁及不锈钢粉的最佳工艺条件:c(盐酸)=3.0 mol/L、温度为40℃、反应时间为1 h、液固比为10∶1;采用酸溶和碱溶方法除硅,可使碳化硅微粉中硅的质量分数降到0.5%以下。  相似文献   

10.
用氯化钠和稀氟硅酸反应制备氟硅酸钠,产生的低浓度酸性废水处理相当困难。研究了以有机胺作为萃取剂,回收利用氟硅酸钠副产含氯废水的新方法。实验结果表明:在有机相与水相的体积比为1∶1、含氯废水中氯离子质量分数为3.0%左右、萃取温度为常温(20℃)、萃取时间为10 min的条件下,含氯废水中氯化氢的萃取率可达到100%,回收后的废水可返回氟硅酸钠生产中。采用氨质量分数为8%的氯化铵溶液、反萃温度控制在40℃、反萃时间为30 min,可达到较好的反萃效果。对实现废水资源的循环利用具有重要的现实意义。  相似文献   

11.
以不同浓度的硅酸钠、碳酸钠及二者混合物作稳定剂,研究它们对有效氯含量为0.5%(质量分数,下同)的次氯酸钠溶液化学稳定性的影响。测定稳定化处理后次氯酸钠溶液中有效氯的含量,结果表明:54 ℃下恒温密闭静置14 d后,加入硅酸钠、碳酸钠以及二者混合物作稳定剂的次氯酸钠溶液的有效氯,最高分别可保留初始浓度的88.16%、86.81%和92.85%;而不加任何稳定剂的次氯酸钠溶液在同样条件下其有效氯含量仅仅可保留初始浓度的76.58%。实验结果表明,硅酸钠和碳酸钠的混合物可以作为次氯酸钠溶液的良好稳定剂。  相似文献   

12.
介绍了废次氯酸钠中乙炔气的闪蒸回收及废液回用复配次氯酸钠的工艺、实际生产情况,废液的回用可节约大量水资源,实现污水零排放。  相似文献   

13.
硫酸钠法生产氟硅酸钠废水中含有大量的钠离子、硅胶固形物和叫(H2SO4)3%~5%的硫酸.氟硅酸钠废水综合回收利用技术采用沉降分离固形物,上层清液加热后用于二水物湿法磷酸过滤系统,然后返回萃取槽,回收其中的硫酸。该项技术回收硫酸和节约处理氟硅酸钠废水费用达1348万元.折每吨P2O5节约成本22.42元。  相似文献   

14.
针对氧化法烟气脱硫脱硝废水中含大量亚硝酸盐造成水体污染及有价盐资源浪费问题,回收废水中的NaNO2,提出pH调控除杂?碳碱沉淀脱钙?结晶提纯分离工艺,分别考察了pH值、除钙剂投加方式、浓缩总盐浓度和结晶温度对废水中NaNO2结晶率和纯度的影响。结果表明,pH值和浓缩总盐浓度是影响脱硫脱硝废水中NaNO2结晶率及纯度的主要因素。在除杂pH=11、除钙剂湿投、浓缩总盐浓度70wt%、结晶温度50℃的条件下,NaNO2结晶率大于60%,产品质量达到GB/T 2367-2016标准。  相似文献   

15.
使用沉淀剂对垃圾焚烧飞灰水洗液中的重金属进行去除实验,并对去除重金属后水洗液中的无机盐进行分离回收。考察了无机、有机沉淀剂单独使用以及无机-有机沉淀剂联用对水洗液中重金属的去除效果,对纯化后的水洗液进行蒸发结晶分离,对不同沸点温度分离得到的无机盐的纯度进行分析。结果表明,无机沉淀剂碳酸钠与硫化钠相比硫化钠去除重金属的效果较好,在硫化钠与重金属物质的量比为1.5时重金属的总去除率可达89.02%;有机沉淀剂TMT-102、MT-103、RS-2568中去除重金属效果最好的是MT-103,在其添加量为400 mg/L时重金属的总去除率可达99.49%。将无机-有机沉淀剂联用,先以硫化钠与重金属物质的量比为1.5加入硫化钠,再加入40 mg/L的MT-103,飞灰水洗液中重金属的总去除率可高达99.60%。将纯化后的水洗液中的无机氯盐进行蒸发分离,蒸发沸点为114 ℃时一次蒸发结束,分离后的盐浆在不低于80 ℃条件下洗涤提纯,得到氯化钠的纯度在95%以上;将母液继续蒸发至沸点温度为126 ℃,然后降温结晶,粗钾按照液固质量比为1.5进行水洗,得到氯化钾的纯度在96%以上;最后的氯化钙母液蒸发至134 ℃,然后降温结晶,可得六水合氯化钙。  相似文献   

16.
杨旭  郝爱友  冯维春 《应用化工》2014,(6):1156-1158,1164
采用水合肼、氢氧化钠、亚硝酸乙酯液液水相带压反应合成叠氮化钠,收率≥88%。有效解决了传统气液两相合成叠氮化钠过程中乙醇消耗量大、亚硝酸乙酯利用率低、剧毒废液产生量大的问题。含叠氮化钠的废液采用醋酸中和、次氯酸钠氧化无害化处理,处理效率≥99.9%。  相似文献   

17.
赖喆  宗刚 《过滤与分离》2010,20(1):19-22
采用次氯酸盐氧化法,以次氯酸钠与硫酸铁为原料,现场制备高铁酸钠溶液,确定了铁盐投加量、氢氧化钠投加量、反应温度、反应时间等最佳制备条件,并应用于染料废水。实验结果表明,高铁酸钠溶液最佳制备条件为:10g氢氧化钠,2.80g硫酸铁,反应温度33℃~36℃,反应时间60min。所制备的高铁酸钠摩尔浓度为0.03mol/L。应用于染料废水色度的去除时,其最佳降解工艺参数为:投加的高铁酸钠的体积百分比为1.2%,溶液pH值为中性6~8,反应温度选择室温,反应时间为0~15min时最佳。  相似文献   

18.
以碳酸钠和双氧水为原料制备过碳酸钠。考察了反应温度、反应时间、原料配比、后处理工艺等因素对过碳酸钠产品收率和稳定性的影响。适宜工艺条件:反应温度为15 ℃、反应时间为30 min、复合稳定剂(聚丙烯酸钠-硅酸钠-硫酸镁)加入量为碳酸钠质量的1%、碳酸钠与双氧水物质的量比为1∶(1.5~1.6)。在此条件下,制得过碳酸钠产品活性氧含量较高。结晶后,利用双氧水溶液对晶粒进行洗涤,于50 ℃下干燥3 h,过碳酸钠产品收率可达到88%,活性氧质量分数可达到14.75%。过碳酸钠产品存储35 d后,活性氧质量分数仍可达到13.90%,稳定性较好。  相似文献   

19.
铝、硅主要是以高岭土形式存在于煤矸石中的,活性非常低。通过添加碳酸钠在一定温度下焙烧煤矸石,使煤矸石中的氧化铝和氧化硅转化为可溶硅铝酸钠,并通过实验确定了影响合成4A分子筛性能的因素。实验表明,碳酸钠与煤矸石质量比为1.2、活化温度为800 ℃、活化时间为1.5 h、n(氧化钠)/n(二氧化硅)为1.8、n(水)/n(氧化钠)为42、晶化温度控制在90 ℃、晶化时间为3 h,制得的4A分子筛的钙离子交换能力为305 mg/g,对废水中铬离子的去除率达到83.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号