首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
以Na2WO4·2H20和Zn(NO3)2·6H2O为原料,采用微波水热法在不同pH值下200℃反应60min制备出ZnW04粉体。分析了pH值对合成样品的物相、形貌和比表面积的影响,并对不同pH值下合成粉体的光催化性能进行了研究。结果表明:pH值为5.0~7.5时适宜合成ZnW04粉体,pH为5.0、6.0和7.5时分别合成了星状、颗粒状及纤维状ZnWO4粉体:制备出的ZnWO4粉体比表面积分别为15.79、28.12m。/g和54.27m^2/g;随着ZnW04粉体比表面积的增加,ZnWO4粉体光催化性能随之提高,其中pH=7.5时合成的纤维状的ZnWO4粉体比表面积最大,在紫外光下,2h的光催化降解罗丹明B降解率达到了98.5%。  相似文献   

2.
左琛光  刘向春 《硅酸盐通报》2016,35(11):3686-3689
采用熔盐法成功制备出了钨酸锌(ZnWO4)纳米晶.用XRD、SEM分别对产物的相组成、粒度、显微结构等进行了表征.结果表明:以Na2WO4·2H2O、Zn(NO3)2·6H2O为原料,NaNO3-LiNO3为熔盐,分别在200~400℃保温12h均能合成纯相的ZnWO4粉体;当温度达到500℃时生成花朵状的ZnO片状粉体;ZnWO4颗粒的形貌与煅烧温度和保温时间有密切关系,随温度升高,颗粒形貌的演变过程为:当温度为200℃时生成纳米颗粒;升高温度至300℃时,生成棒状纳米晶体;继续升高温度到400℃时,形成了块状的微米晶体.随着保温时间的延长,颗粒形貌的演变过程为:由纳米颗粒转变为棒状纳米晶体.  相似文献   

3.
以FeSO4·7H2O,NH4H2PO4,H2O2和NH3·H2O为原料,采用均相沉淀法制备前驱体FePO4·2H2O,再通过流变相法制得LiFePO4/C复合材料,研究了反应温度、搅拌速度和pH值等反应条件对合成LiFePO4/C的影响。采用XRD、SEM和恒流充放电方法表征了材料的结构、形貌和电化学性能。结果表明:当反应温度为60℃,搅拌速度为800 r/min,pH值为2.5时,合成的LiFePO4/C为纯相,且粒度均匀,粒径约为200 nm,在0.1 C充放电倍率下,其首次放电比容量达137 mAh/g。  相似文献   

4.
以FeSO4·7H2O,NH4H2PO4,H2O2和NH3·H2O为原料,采用均相沉淀法制备前驱体FePO4·2H2O,再通过流变相法制得LiFePO4/C复合材料,研究了反应温度、搅拌速度和pH值等反应条件对合成LiFePO4/C的影响。采用XRD、SEM和恒流充放电方法表征了材料的结构、形貌和电化学性能。结果表明:当反应温度为60℃,搅拌速度为800 r/min,pH值为2.5时,合成的LiFePO4/C为纯相,且粒度均匀,粒径约为200 nm,在0.1 C充放电倍率下,其首次放电比容量达137 mAh/g。  相似文献   

5.
己二酸的绿色合成   总被引:2,自引:0,他引:2  
以NaWO4·2H2O为催化剂,H2O2氧化环己酮合成己二酸。探讨了NaWO4·2H2O用量、H2O2用量、反应温度和时间等条件对反应的影响。优化条件:n(环己酮):n(H2O2):n(NaWO4·2H2O)=100:400:1.6、反应温度100℃、反应时间4h。己二酸分离收率达61.6%。  相似文献   

6.
采用微波水热法,以Na2WO4 2H2O和Zn(COOCH3)2 2H2O为原料,在无模板剂的条件下,可控合成了黑钨矿钨酸锌纳米晶。利用X射线衍射仪、透射电子显微镜和紫外-可见吸收光谱分别对产物的物相、形貌和光学性能进行了表征。结果表明:在微波水热条件下,反应温度为180℃时,反应时间为10min即可制备出纯相的ZnWO4纳米晶。随着反应时间的延长,产物由短棒状纳米晶逐渐生长为长棒状纳米晶。光谱研究发现,所制备的ZnWO4纳米晶具有较强的紫外吸收特性,其禁带宽度可控制在3.77~3.89eV,随反应时间延长,其禁带宽度逐渐增加。  相似文献   

7.
采用微波水热法,以Na2WO4 2H2O 和 Zn(COOCH3)2 2H2O 为原料,在无模板剂的条件下,可控合成了黑钨矿钨酸锌纳米晶。利用 X 射线衍射仪、透射电子显微镜和紫外–可见吸收光谱分别对产物的物相、形貌和光学性能进行了表征。结果表明:在微波水热条件下,反应温度为 180℃时,反应时间为 10min 即可制备出纯相的 ZnWO4纳米晶。随着反应时间的延长,产物由短棒状纳米晶逐渐生长为长棒状纳米晶。光谱研究发现,所制备的 ZnWO4纳米晶具有较强的紫外吸收特性,其禁带宽度可控制在 3.77~3.89eV,随反应时间延长,其禁带宽度逐渐增加。  相似文献   

8.
燃烧法合成高纯度负热膨胀材料ZrW2O8粉体   总被引:12,自引:1,他引:12  
严学华  杨新波  程晓农  付廷波  邱杰  刘红飞 《硅酸盐学报》2006,34(9):1066-1069,1074
采用燃烧法在较低温度下成功合成了各向同性的负热膨胀材料ZrW2O8粉体.用X射线衍射、扫描电镜、红外光谱综合分析和研究了反应过程中炉温、硼酸和尿素含量、W6 与Zr4 的摩尔比对合成ZrW2O8纯度的影响.结果表明:燃烧法可以合成高纯度、粒径为0.5μm的ZrW2O8粉体.燃烧法合成高纯ZrW2O8的最佳条件是:炉温为500℃,硼酸的摩尔分数为10%,(NH2)2CO与(NH4)5H5[H2(WO4)6]·H2O ZrOCl2·8H2O的质量比为2∶1,(NH4)5H5[H2(WO4)6]·H2O与ZrOCl2·8H2O的摩尔比为1∶3.2.所合成的ZrW2O8在50~700℃之间的线膨胀系数a=-5.08×10-6/℃,其线膨胀系数与温度的关系符合方程dL/L0=-1.4×10-2-4.5×10-4T(50℃≤T≤700℃).  相似文献   

9.
利用化学沉积法制备铜纳米线,以铜纳米线为基质,在不同温度下水浴反应合成具有核壳结构的一维Cu_2O@ Cu纳米线。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、比表面积测试(BET)、紫外-可见光谱(UV-VISDRS)等分析手段,对所得材料的结构、形貌和光学性质进行表征。并考察了其对甲基橙的吸附性能和光催化性能。结果表明:合成的Cu_2O@ Cu纳米线对甲基橙取得了71.4%的吸附率和70.1%光催化脱色率,且Cu_2O@ Cu纳米线表面的纳米Cu_2O粒径过大或过小都将减弱其脱色性能,结晶性越好可增强其脱色性能,其粒径在30~34 nm范围内,脱色效能最佳。  相似文献   

10.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号