首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The devulcanization reaction of styrene–butadiene rubber (SBR) based ground tire rubber (GTR) in GTR/ethylene–propylene–diene monomer rubber (EPDM) blend was investigated through a compound‐induced reaction by increasing screw rotation speed and being in the presence of subcritical water. The effects of temperature, pressure, screw rotation speed, or promoting agents on the gel content, Mooney viscosity, and Fourier transform infrared spectra of the sol of the devulcanized blends (devulcanized ground tire rubber (DGTR)/EPDM) were measured, and the mechanical properties and microstructures of the revulcanized blend ((DGTR/EPDM)/SBR) were characterized. The results show that subcritical water as a swelling agent and reaction medium promotes the devulcanization reaction, increases the selectivity of the crosslink breakage, keeps the extrusion material from oxidative degradation, reduces the gel particle size of the devulcanized blends, and significantly improves the mechanical properties of the revulcanized SBR/(DGTR/EPDM) blends. In subcritical water, the suitable promoting agents (alkylphenol polysulfide 450, hydrogen peroxide H2O2, or 450/H2O2) accelerate the devulcanization reaction, keep the double bond content, and lead to further decrease of the gel content and Mooney viscosity of the devulcanized blends and further increase of the mechanical properties of the revulcanized SBR/(DGTR/EPDM) blends. Especially the compound promoting agent (450/H2O2) improves the selectivity of the crosslink breakage in devulcanization of SBR‐based GTR. When 450/H2O2 is added as a compound promoting agent at the best reaction condition in subcritical water (200°C, 1.6 MPa and 1000 rpm), the tensile strength and elongation at break of the revulcanized SBR/(DGTR/EPDM) blends reach to 85.4% and 201% of vulcanized SBR (24.0 MPa, 356%), respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1845–1854, 2013  相似文献   

2.
Composites made from ground tire rubber (GTR) and waste fiber produced in tire reclamation were prepared by mechanical milling. The effects of the fiber content, pan milling, and fiber orientation on the mechanical properties of the composites were investigated. The results showed that the stress‐induced mechanochemical devulcanization of waste rubber and the reinforcement of devulcanized waste rubber with waste‐tire fibers could be achieved through comilling. For a comilled system, the tensile strength and elongation at break of revulcanized GTR/fiber composites reached maximum values of 9.6 MPa and 215.9%, respectively, with 5 wt % fiber. Compared with those of a composite prepared in a conventional mixing manner, the mechanical properties were greatly improved by comilling. Oxygen‐containing groups on the surface of GTR particles, which were produced during pan milling, increased interfacial interactions between GTR and waste fibers. The fiber‐filled composites showed anisotropy in the stress–strain properties because of preferential orientation of the short fibers along the roll‐milling direction (longitudinal), and the adhesion between the fiber and rubber matrix was improved by the comilling of the fiber with waste rubber. The proposed process provides an economical and ecologically sound method for tire‐rubber recycling. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4087–4094, 2007  相似文献   

3.
采用氧化亚铁硫杆菌对胎面胶粉(GTR)进行脱硫再生,将生物脱硫胎面胶粉(DGTR)与丁苯橡胶(SBR)共混制备DGTR/SBR并用胶,并对其性能进行研究。结果表明:从氧化亚铁硫杆菌与GTR共培养脱硫再生过程发现,氧化亚铁硫杆菌可以代谢硫化胶粉中的化合硫,脱硫后胶粉的溶胶质量分数增大;与GTR/SBR并用胶相比,DGTR/SBR并用胶的交联密度较小,物理性能显著提高;DGTR/SBR并用胶分子间的摩擦阻力减小,玻璃化温度降低;与GTR相比,DGTR与SBR的界面结合更好。  相似文献   

4.
This work aimed to evaluate the effects of processing parameters on properties of dynamically revulcanized blends based on 60 wt % of devulcanized ground tire rubber (GTR) and 40 wt % of high density polyethylene (HDPE). Devulcanization of the GTR was carried out in a system comprised of a conventional microwave oven adapted with a motorized stirring system with speed control. The resulting devulcanized GTR contained 26 wt % soluble in toluene. It was processed with HDPE in a twin screw extruder to produce a dynamically revulcanized blend. Processing parameters such as screw speed and feeding mode were varied. Their effects were evaluated based on tensile, dynamic mechanical, thermal and rheological properties, as well as on morphology. The results show the importance of the processing parameters involved in the production of blends with dynamically revulcanized rubber phase in the extruder, and good match between the residence time of the rubber and its revulcanization kinetics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43503.  相似文献   

5.
Appraisal of the main rubber characterization techniques for styrene butadiene rubber (SBR) was performed on standard SBR samples as well as recycled ground tire rubber (GTR) from an industrial tire recycling facility, containing a blend of SBR and natural rubber. The aim of the work was to provide additional information relevant to quality control in the field of rubber recycling. Benchmark characterization of industrial samples by inductively coupled plasma optical emission spectrometry, atomic absorption spectrometry, solid‐state proton nuclear magnetic resonance, and elemental (CHNS) analysis are reported. X‐ray fluorescence spectrometry is shown to be rapid and quantitative for determining the zinc content in an industrial context. Thermogravimetric analysis, already used to determine carbon black and inorganic material content in rubbers and GTR, is recommended for determination of monomer weight ratios of SBR sources not containing other rubbers, but not for GTR. Differential scanning calorimetry (DSC) measurements of the glass‐transition show that changes in monomer ratio affect glass‐transition temperature values, and therefore, DSC can be used to detect changes in rubber composition from batch to batch. These results show that DSC and X‐ray fluorescence spectroscopy characterization techniques can be used for GTR and may lead to more thorough and rapid quality control procedures of these complex samples. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42692.  相似文献   

6.
The devulcanization of ground tire rubber (GTR) was carried out with a self-designed pan-mill type mechanochemical reactor. Gel fraction and crosslink density measurements confirmed the occurrence of stress induced mechanochemical devulcanization of GTR. The partially devulcanized GTR (dGTR) was blended with virgin natural rubber (NR) at different ratios. The curing characteristics and mechanical properties of these composites were investigated and compared with those composites of raw ground tire rubber (rGTR) and NR. The results showed that the tensile properties of the dGTR/NR vulcanizates were much better than those of the rGTR/NR vulcanizates, which are comparable to or even better than the virgin vulcanizate, indicating the significant benefit of mechanochemical devulcanization. At the GTR content of 10%, the tensile strength of the dGTR/NR blends increased to 23.2 MPa from 13.7 MPa of the rGTR/NR blends, enhanced by 69% through partial devulcanization of GTR, and the elongation at break increased by 47%.  相似文献   

7.
The use of recycled rubber in preparation of acoustic absorbent materials will help to combat the existing environmental problems of both waste disposal and noise pollution. The focus of this work is to investigate the influence of mechanochemical pretreatment of ground tire rubber (GTR) on the acoustic absorption properties of polyurethane (PU)/GTR foamed composites. GTR subjected to pan‐milling could be mechanochemically devulcanized by breaking up the crosslinked structures through inducing fairly strong shearing and compressing forces. The significant increase in sol fraction of GTR confirmed the partial devulcanization during pan‐milling. Moreover, thermal gravimetric analysis indicated that rubber content in the soluble part of GTR was also remarkably increased. The devulcanization increased flexible chains of the GTR particles, which could help to improve damping properties as well as acoustic absorption ability of the PU/GTR foamed composites. Dynamic mechanical analysis and acoustic absorption measurements well confirmed this hypothesis. The loss modulus and sound absorption coefficient of PU/GTR foamed composites were remarkably increased through the mechanochemical pretreatment of GTR. The mechanochemical pretreatment also enhanced foamability of the composites as revealed by cell morphology. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
单螺杆挤出机连续脱硫制备再生胶的结构与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
吕晓龙  吕柏源  黄汉雄  姜庆岩 《化工学报》2014,65(11):4614-4619
利用本课题组研制的单螺杆挤出机,对废旧轮胎胶(GTR)粉进行连续脱硫制备再生胶(DGTR),并对DGTR进行再硫化制成DGTR硫化试样.结果显示,随螺杆转速增加,DGTR凝胶含量和DGTR硫化试样交联密度逐渐降低,DGTR硫化试样的拉伸强度和拉断伸长率有所提高;螺杆转速设定为40 r·min-1时,在205℃脱硫温度下取得了最好的脱硫效果,DGTR硫化试样的拉伸强度和拉断伸长率分别约为11 MPa和386%.从红外光谱和光电子能谱的分析结果推测,在单螺杆挤出机的剪切和热等的共同作用下,GTR粉中部分S-S键和C-S键发生了断裂.  相似文献   

9.
We enhanced tribological and mechanical properties of styrene-butadiene rubber (SBR) by designing double layer aligned-graphene nanosheets (aligned-GNSs)/SBR composites with one-step emulsion polymerization preparation method. The composites consisted of two layers, one is the SBR layer and the other is aligned-GNSs/SBR layer, in which the graphene nanosheets (GNSs) regularly aligned. The resulted composites exhibited mega increase of tribological property as well as mechanical property. With the increase of GNSs contents from 0.5 to 5 wt %, both the friction coefficient and volume wear rate steadily declined, and the mechanics dramatically increased. Such as 59% decrease of friction coefficient and 1778% increase of the initial tensile modulus when the addition of GNSs is 5 wt %. The above results are mainly due to the well aligned-GNSs in SBR, which can take full advantage of the unique properties of GNSs two-dimensional materials. The detailed mechanisms of improving tribological and mechanical properties were discussed in the study. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46939.  相似文献   

10.
Thermomechanical reclaiming of ground tire rubber (GTR) was performed at different temperatures (60, 120, and 180°C) using a co‐rotating twin‐screw extruder. Obtained samples were used in styrene‐butadiene rubber (SBR) blends. As reference samples, SBR compounds containing untreated GTR were used. Curing characteristics, static and dynamic mechanical properties, and morphology of the obtained blends were determined. The results show that the increase of barrel temperature during the thermomechanical reclaiming of GTR has a positive effect on the decrease of screw torque (lower machine load) and decrease of Mooney viscosity (better processing characteristics). However, mechanical properties and crosslink density of rubber revulcanizate decreased with increasing barrel temperature during the reclaiming process. SBR blends with 50 phr of reclaimed rubber showed increasing phase compatibility between SBR matrix and the reclaimed rubber, which was confirmed by mechanical properties and morphology measurements. J. VINYL ADDIT. TECHNOL., 22:213–221, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
闫标  孟亚男  司虎  张云灿 《橡胶工业》2011,58(8):460-465
在废旧轮胎胶粉/EPDM的熔融挤出过程中,以仲丁醇为脱硫反应促进剂,研究螺杆转速和挤出反应温度对脱硫共混物凝胶质量分数(w)、凝胶分子链结构以及SBR/脱硫共混物再硫化材料物理性能的影响。结果表明:在废旧轮胎胶粉/EPDM的熔融挤出过程中,随着螺杆转速和挤出反应温度的升高,废旧轮胎胶粉颗粒所受的机械剪切应力作用增强,引起废旧轮胎胶粉中交联网络的断裂、降解或解交联反应,导致脱硫共混物w显著减小以及SBR/脱硫共混物再硫化材料中凝胶粒子尺寸明显减小;添加仲丁醇有利于脱硫反应的进行,并具有抑制交联副反应和保护脱硫产物中双键的作用,使脱硫共混物的w进一步减小;在螺杆转速为1 000 r.min-1、挤出反应温度为240℃的条件下,SBR/脱硫共混物(添加仲丁醇)再硫化材料的拉伸强度和拉断伸长率分别为19.3 MPa和567%。  相似文献   

12.
在SBR基轮胎胶(GTR)与三元乙丙橡胶(EPDM)混合物的熔融挤出过程中,采用改变亚临界流体品种和提高螺杆转速的方法,研究了亚临界流体(水,乙醇,丙醇)、螺杆转速、烷基酚多硫化物促进剂(450)以及温度对脱硫共混物(DGTR/EPDM)凝胶含量、门尼粘度、溶胶红外光谱及脱硫共混物共混丁苯橡胶(SBR)再硫化材料(SBR/(DGTR/EPDM))力学性能的影响,对再硫化材料的试样断面形貌也进行了SEM观察。实验结果表明:亚临界流体(水,乙醇,丙醇)作为一种溶胀剂和反应性介质能够很好地促进脱硫反应,提高交联键断裂的选择性,降低脱硫产物的凝胶含量和凝胶颗粒尺寸并明显提高脱硫共混物共混丁苯橡胶再硫化材料的力学性能,其中亚临界乙醇的作用最显著。当450作为一种脱硫促进剂,在最优亚临界乙醇挤出反应条件(200℃,1.6 MPa,600 rpm)下,脱硫共混物共混丁苯橡胶分别达到丁苯生胶混炼硫化材料拉伸强度(24.0MPa)和断裂伸长率(356%)的99.6%和209%。  相似文献   

13.
Development of structure–properties relationships between the fillers/rubber matrix interface chemistry and the dispersion and interfacial adhesion properties of the rubber composites is critical to predict their bulk mechanical and tribological properties. In this paper, three solution styrene butadiene rubber (SSBR) composites containing various fillers with tailored interfacial chemistry were prepared via conventional mixing technique. Subsequently, thermal and structural features of filled SSBR composites were monitored by TG, DSC, XRD, XPS, FESEM and TEM, respectively. Sliding contact experiments were conducted to study tribological properties of styrene butadiene rubber composites under dry and wet conditions. It was shown that the SSBR filled with silicon dioxide nanoparticles significantly reduced both the friction coefficient and the wear against marble block. On the contrary, it exhibited an increased friction coefficient and wear under wet friction conditions due to the specific superior wet‐skid resistance of silicon dioxide nanopartilce filled rubber composites, a good dispersion of silicon dioxide nanopartilce in the rubber matrix and strong interfacial adhesion between nanoparticles and rubber matrix. In addition, the influence of fillers dispersion and interfacial adhesion on friction and wear of styrene butadiene rubber composites was evaluated employing theoretical calculation, and the predicted results were in agreement with the experimental observations. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43589.  相似文献   

14.
To improve the tribological properties of basalt‐fabric‐reinforced phenolic composites, solid lubricants of MoS2 and graphite were incorporated, and the tribological properties of the resulting basalt‐fabric composites were investigated on a model ring‐on‐block test rig under dry sliding conditions. The effects of the filler content, load, and sliding time on the tribological behavior of the basalt‐fabric composites were systematically examined. The morphologies of the worn surfaces and transfer films formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The experimental results reveal that the incorporation of MoS2 significantly decreased the friction coefficient, whereas the inclusion of graphite improved the wear resistance remarkably. The results also indicate that the filled basalt‐fabric composites seemed to be more suitable for friction materials serving under higher loads. The transfer films formed on the counterpart surfaces during the friction process made contributions to the reduction of the friction coefficient and wear rate of the basalt‐fabric composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
《Polymer Composites》2017,38(6):1183-1193
Multi‐walled carbon nanotubes (MWCNTs) filled graphite lubricated phenolic‐based friction composites reinforced with combination of lapinus/Kevlar fibers have been fabricated and subsequently evaluated for their dynamic‐mechanical and tribological properties. The experimental results indicated that the higher MWCNT content enhances the thermal stability, whereas, lower MWCNT content enhances the thermo‐mechanical properties of the friction composites. The tribo‐performance evaluation has revealed that with the increase in MWCNT content, the friction‐fade and friction‐recovery performances are enhanced. The friction‐stability and friction‐variability coefficients are influenced by the combination of MWCNT, graphite, lapinus, and Kevlar constituents. The wear performance decreases with the increase in lapinus and MWCNT, whereas, it increases when the amount of Kevlar or graphite is increased in the composites. Wear surface morphological studies have led to the qualitative characterization of the topographical attributes and the nature of the frictional contact patches which is crucial in understanding the role of MWCNT on friction and wear mechanisms of the investigated automotive brake friction materials. POLYM. COMPOS., 38:1183–1193, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
The wear resistance of zinc oxide whisker (ZnOw)/natural rubber‐styrene butadiene rubber‐butyl rubber (NR‐SBR‐BR) composites showed that a tetra‐needle like ZnOw, which is treated by a coupling agent, improved the wear resistance of the rubber composites. The topography of the worn surfaces of the ZnOw/NR‐SBR‐BR composites was fractal, and the fractal dimension and abrasion loss decreased synchronously as the ZnOw content increased in the composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 667–670, 2003  相似文献   

17.
在废轮胎胶(GTR)与三元乙丙橡胶(EPDM)熔融挤出过程中添加多烷基苯酚二硫化物(简称420)或/和仲丁醇作为脱硫促进剂,考察了在不同螺杆转速和挤出反应温度下脱硫促进剂对GTR与EPDM脱硫共混物(DGTR/EPDM)凝胶含量和溶胶分子链结构的影响,研究了DGTR/EPDM/丁苯橡胶(SBR)再硫化胶的相态结构及物理...  相似文献   

18.
This work investigates mechanical properties of styrene‐butadiene rubber (SBR) composites incorporating magadiite (MGD), a synthetic layered silicate (Na2Si14O29·9H2O) with surface chemistry similar to precipitated silica used in tire tread formulations. Treatment with cetyltrimethylammonium (CTA+) expands the MGD layers and makes the interlayer face surfaces accessible to sulfur‐functional silane TESPT (Si69) and SBR, primarily during batch mixing. DMA and tensile testing of cured CMGD/SBR composites show that CTA‐treated MGD (CMGD) provides substantially higher levels of mechanical reinforcement than equivalent amounts of silica. However, CMGD/SBR composites exhibit larger loss tangent values above Tg, probably due to lower SBR‐SBR crosslink density resulting from interlayer trapping of sulfur released by Si69 during vulcanization. DMA and tensile testing also demonstrate Si69′s critical role in forming MGD‐SBR graft sites essential to mechanical reinforcement. Replacing silica with CMGD reduces composite weight without sacrificing tensile modulus, suggesting that use of CMGD in tire rubber formulations could improve vehicle energy efficiency. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44763.  相似文献   

19.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

20.
Self‐lubricating microcapsules containing methyl silicone oil as core materials, were prepared with poly(melamine‐formaldehyde) as shell material by in situ polymerization method. Combining with synergistic effect of the short carbon fibers (SCFs) which were systematically treated by liquid‐phase oxidation and chemical grafting, they were simultaneously adopted as reinforcing additives to improve the tribological and mechanical properties of polyurethane materials. The tribological behaviors and mechanical properties of the polyurethane composites have been investigated by a block‐on‐ring wear tester and electronic universal testing machine, respectively. The results indicate that the friction coefficient and wear rate of polyurethane composites without SCFs significantly decreased with increased self‐lubricating microcapsule concentration from 2.5 to 10 wt % due to the release of methyl silicone oil; meanwhile, the polyurethane composites filled with 10 wt % microcapsule and 15 wt % SCFs not only exhibited the lowest friction and wear behaviors, but also improved mechanical strength and thermal stability of polyurethane composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45331.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号