首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
以3,3′,4,4′-二苯醚四羧酸二酐(ODPA)、4,4′-二氨基二苯醚(ODA)为单体,N-甲基-2-砒咯烷酮(NMP)为溶剂,粉末二氧化硅(SiO_2)为添加剂,通过原位聚合法得到二氧化硅/聚酰胺酸杂化液,制备二氧化硅/聚酰亚胺杂化薄膜。用红外光谱仪、X-射线衍射仪、扫描电镜、偏光显微镜和拉力试验机等对杂化薄膜的聚集态结构及性能进行表征测试。结果表明,SiO_2极细的粒径对PI起到了增强、增韧作用,随着SiO_2添加量从0%增加到8%,杂化薄膜的有序度、拉伸强度、弹性模量、断裂伸长率呈现先升高后下降的趋势。当二氧化硅添加量为6%时,杂化薄膜的综合性能最佳,此时有序度、拉伸强度、弹性模量、断裂伸长率分别较纯PI膜提高了6%、15%、28%、28%。  相似文献   

2.
以二胺单体2,2′-对苯基双-(5-氨基苯并咪唑)(PBABI)、 1,4-二氨基苯二胺(p-PDA)与二酐单体3,3′,4,4′-联苯四甲酸二酐(BPDA)进行共聚,制备高相对分子质量的聚酰亚胺(PI)前驱体聚酰胺酸(PAA),再通过热酰亚胺化的方式得到含苯并双咪唑重复单元的高阻燃共聚PI薄膜;研究了PI薄膜的聚集态结构、化学结构、热稳定性、阻燃性能和力学性能。结果表明:随着苯并双咪唑单体的增多,PI薄膜逐渐从有序堆积向无定型结构演变;苯并双咪唑结构促进了PI薄膜体系中形成分子间氢键作用;苯并咪唑的引入使PI薄膜的最大热分解温度提高5℃、玻璃化转变温度提升90℃、拉伸强度提高126 MPa,同时含苯并双咪唑的PI薄膜表现出优异的阻燃性能,极限氧指数提高到54%。  相似文献   

3.
艾罡 《陶瓷》2020,(1):23-29
笔者以均苯四甲酸二酐(PMDA)和4,4’-二氨基二苯醚(ODA)为单体,以N,N’-二甲基二苯醚(DMAc)为溶剂,制备聚酰胺酸溶液。在此过程中,采用原位聚合法在酰胺酸溶液中加入氧化铝(Al2O3),通过热亚胺化处理制备得到氧化铝/聚酰亚胺(Al2O3/PI)杂化薄膜。用傅立叶变换衰减透射射红外光谱(ATR/FTIR)、静态热机械分析(TMA)、力学性能测试等手段对PI/Al2O3杂化薄膜结构和性能进行表征。红外分析表明,杂化薄膜热亚胺化完全,杂化反应充分进行,并且Al2O3和PI基体之间形成键接;TMA分析表明,PI/Al2O3杂化薄膜的热膨胀系数随氧化铝含量的增加而减小;常温拉伸性能测试表明,随着Al2O3量的增加,PI杂化薄膜弹性模量逐渐增大,而拉伸强度和断裂伸长率呈下降趋势;玻璃化转变温度测试表明,杂化Al2O3之后的玻璃化温度不是很明显;热重分析表明,引入一定量的Al2O3,薄膜的热分解温度降低。而含有10%氧化铝的杂化薄膜各项性能都表现出相对优良的性能。  相似文献   

4.
以2-(4-氨基苯基)-5-氨基苯并恶唑(AAPBO)和4-氨基苯基-3,5-二乙基-4-氨基苯基-9,10-二氢-9-氧杂-10-磷杂菲-10-磷酰基乙烷(ADADOPPE)为二胺原料,按一定物质的量比与双酚A型二醚二酐(BPADA)共聚,通过两步法得到系列聚酰亚胺(PI)薄膜;并测试了薄膜的热性能、阻燃性及光学透过性。结果表明,含ADADOPPE不对称二胺单体的PI膜,比传统PI膜有更高的阻燃性,其中PI-B-3薄膜的光学透过性最好,截止波长为373.0 nm、450 nm处的透过率为75.27%,最大透过率达到85.69%。  相似文献   

5.
使用4,4′-(六氟异丙烯)二酞酸酐(6FDA)、3,3′,4,4′-二苯酮四酸二酐(BTDA)、4,4′-二胺基二苯醚(ODA)、顺-5-降冰片烯-内型-2,3-二羧酸酐(NA)为反应单体,采用两步聚合法合成了系列聚酰亚胺树脂,并通过添加SiO_2-g-DOPO(二氧化硅-g-9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物)制备了聚酰亚胺基杂化材料,表征了杂化材料的耐热性能,研究了树脂结构及SiO_2-g-DOPO填充量对杂化材料性能的影响。结果表明:以6FDA/BTDA为基体,添加SiO_2-g-DOPO质量分数为10%时,所制备的杂化材料性能最佳,5%热失重温度为540℃,玻璃化转变温度为320℃,线烧蚀率为-4.200 0 mm/s,质量烧蚀率为0.008 2 g/s;与传统酚醛材料相比,杂化材料烧蚀隔热性能显著提高。  相似文献   

6.
牛颖 《塑料》2011,40(6)
以TEOS为无机前躯体,采用溶胶-凝胶路线成功制备了水含量不同的3种聚酰亚胺/二氧化硅(P1/SiO2)纳米杂化薄膜.采用傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、热重分析(TGA)等方法研究了杂化薄膜的结构与热稳定性.研究结果表明:水含量对PI/SiO2杂化薄膜热稳定性影响很大.在水含量不同的3种杂化薄膜中,当水含量为1:6时,热稳定性最高.在质量损失为5%时,杂化薄膜的热分解温度为592.1℃.与纯PI相比,热稳定性升高.  相似文献   

7.
以4,4'-二氨基二苯醚(ODA)和均苯四甲酸二酐(PMDA)为单体,以聚苯胺-二氧化钛(PANI-TiO_2)为掺杂物,用原位聚合和超声振荡法制得聚酰胺酸/聚苯胺-二氧化钛溶液,经热亚胺化制得聚酰亚胺/聚苯胺-二氧化钛(PI/PANI-TiO_2)复合薄膜。采用FTIR、SEM、TG-DTG、介电常数、电子万能试验机等对复合薄膜的结构、形貌和性能进行了表征与测试。结果表明:PI/PANI-TiO_2薄膜的热亚胺化完全,PANI-TiO_2粒子在PI基体中分布均匀。掺杂10%(以反应制得PI的质量为基准,下同)PANI-TiO_2的PI/PANI-TiO_2复合薄膜的综合性能优于纯PI,其拉伸强度由纯PI的14.8 MPa提高到43.8 MPa;初始分解温度由纯PI的435℃提高到518℃,800℃时的残炭量达到57.7%;介电常数由3.38提高到3.86,介电损耗由0.0013提高到0.0040。  相似文献   

8.
摘要:以4,4 -二氨基二苯醚(ODA)和均苯四甲酸二酐(PDMA)为单体,以聚苯胺-二氧化钛(PANI-TiO2)为掺杂物,用原位聚合和超声振荡法制得墨绿色的黏稠液聚酰胺酸/聚苯胺-二氧化钛,经热亚胺化制得PI/PANI-TiO2复合薄膜。采用FTIR、SEM、TG-DTG、介电常数、电子万能试验机等对复合薄膜的结构、形貌和性能进行了表征与测试,同时与PI薄膜做了比较。结果表明,PI/PANI-TiO2薄膜的热亚胺化完全,PANI-TiO2粒子在PI基体中分布均匀。掺杂质量分数为10%PANI-TiO2的PI/PANI-TiO2复合薄膜的拉伸强度由纯PI的14.8 MPa提高到43.8 MPa;初始分解温度由纯PI的435℃提高到518℃,800℃时的残留量由纯PI的21.3%提高到57.7%;介电常数由3.38提高到3.86,介电损耗由0.0013提高到0.0040。可见PI/PANI-TiO2复合薄膜的力学性能和热稳定性能比未复合的PI增强了,相对介电常数和介电损耗因数提高了。  相似文献   

9.
以4,4’-二胺基二苯醚(ODA)、2,2’-双[3-苯基-4(4-氨基苯氧基)苯基]丙烷(BPAPOPP)和均苯四甲酸酐(PMDA)为单体,采用溶液共缩聚方法合成了一系列共聚聚酰亚胺(PI)薄膜;采用傅里叶红外光谱仪(FTIR)、差示扫描量热仪(DSC)等分析了PI薄膜的结构和性能。结果表明:随着高聚物中柔性体系含量的增加,PI薄膜的热学性能和力学性能都有一定程度降低;但其加工性能得到了改善。  相似文献   

10.
为解决传统树脂结合剂耐热性不高及与低熔点金属温度匹配性差的问题,以2,2′-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和均苯四甲酸酐(PMDA)为单体,通过两步合成法制备聚酰亚胺树脂(PI),通过调控反应参数发现加料顺序为先胺后酐,反应时间6 h,单体PMDA与BAPP物质的量比为1.02∶1时,PI分子质量最佳,具有较好的力学性能(纯PI结合剂弯曲强度达95 MPa)和热稳定性(初始分解温度约510℃)。其与低熔点铜合金制备复合结合剂时,具有较好的成型温度匹配性和耐热性,当树脂体积分数为10%时,PI及聚酰胺酸复合结合剂的弯曲强度分别为532 MPa和540 MPa,综合性能较佳。  相似文献   

11.
采用溶胶凝胶法以硅烷偶联剂KH-792及正硅酸乙酯为原料,制备了一种末端含有氨基的杂化SiO_2(SiO_2-NH_2),将其加入双马来酰亚胺(BMI)树脂中,通过红外光谱,凝胶时间测定及示差扫描量热分析研究了SiO_2-NH_2对BMI树脂固化反应动力学的影响。结果表明,树脂体系的固化工艺为140℃/2 h+180℃/2 h+220℃/4 h+250℃/6 h,SiO_2-NH_2的加入促进了BMI树脂体系的固化,且体系的表观活化能有所降低,可在工程领域良好应用。  相似文献   

12.
以4,4'-二氨基二苯醚(ODA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)为单体,以苯基异氰酸酯改性氧化石墨烯(pGO)为填料,通过原位聚合法成功制备了改性氧化石墨烯/聚酰亚胺复合薄膜。采用红外光谱对其结构进行了表征,并研究其拉伸性能和热稳定性能。结果表明,当填料含量为1%时复合薄膜的拉伸性能最佳,拉伸强度(T_S)达到69.1MPa,拉伸模量(T_M)达到2.31GPa,相对于纯PI薄膜其拉伸强度提高9.3%,拉伸模量提高19.1%;此时复合薄膜的残炭率(Y_c)为60.1%,比纯PI薄膜提高2.7%,最大分解速率时的温度(T_(max))为587℃,比纯PI薄膜提高约8℃,玻璃化转变温度(T_g)为361℃,说明该复合薄膜的拉伸性能和热稳定性能得到一定程度的提高。  相似文献   

13.
为提高聚酰亚胺(PI)模塑料的耐高温性能,以2–(4–氨基苯基)–5–氨基苯并噁唑(BOA)和二氨基二苯醚作为混合二胺与均苯四甲酸酐合成聚酰胺酸树脂,随后通过热亚胺化法制备得到不同噁唑单元添加量的PI模塑粉。利用傅立叶变换红外光谱对模塑粉化学结构进行表征,并考察其在氮气和氧气氛围中的热失重行为。通过热模压方法制备得到含苯并噁唑结构的耐高温PI模塑料,对模塑料室温和430℃高温条件下力学性能进行测试,并对其高温性能稳定性和尺寸稳定性进行表征分析。结果表明,通过两步法和热亚胺化法成功将噁唑基团引入到PI结构中;随着BOA引入量的增加,模塑粉耐热氧稳定性显著提升,模塑料室温拉伸性能有所下降,压缩性能提升,但430℃高温下拉伸性能和压缩性能均优于不含BOA的模塑料,且力学性能保持率显著提高;BOA的引入还提高了PI材料高温性能稳定性,显著降低线性热膨胀系数,含苯并噁唑结构的PI模塑料展现出优越的耐高温性。  相似文献   

14.
采用二步法,在冰浴的条件下,以含脂环结构的二胺单体5-氨基-1,3,3-三甲基环己甲胺(IPDA)和4,4′-二氨基二环己基甲烷(PACM)与二酐单体4,4′-(4,4′-异丙基二苯氧基)双(邻苯二甲酸酐)(BPADA),制备六种不同二胺比例的聚酰亚胺(PI)薄膜。通过红外光谱、X射线衍射(XRD)分析、紫外可见光谱、热机械分析、差示扫描量热(DSC)测试、热失重测试和力学性能测试对薄膜进行表征分析。结果表明,PI薄膜已经完全亚胺化,整体为无定型形态,在可见光范围内具有较高的紫外透过率,最大透过率均在87%以上,450 nm最高透过率为83.26%,力学性能表现出柔性,玻璃化转变温度(Tg)均在200℃左右,初始分解温度均在388℃以上,在未到初始分解温度之前,几乎不发生质量损失,热稳定性良好。  相似文献   

15.
以柔性二胺单体1,3-双(4-氨基苯氧基)苯(134BAPB)和含支链二胺单体3,3′-二乙基-4,4′-二氨基二苯甲烷(DEMMD)与3,3′,4,4′-二苯酮四酸二酐(BTDA)进行三元共聚,制备了一系列聚酰亚胺(PI)薄膜。通过傅里叶红外光谱、差示扫描量热仪、热重分析仪、热机械分析仪及电子万能材料试验机对材料的结构、热性能和力学性能进行了表征。结果表明PI薄膜已经成功制备,热性能与力学性能良好。  相似文献   

16.
穆娟  孙安  张聪 《塑料助剂》2015,(2):40-42
采用溶胶-凝胶法制备二氧化硅,并将其掺杂于制备的聚酰胺中,反应制成杂化聚酰亚胺(PI)薄膜。通过扫描电镜(SEM)对粒子结构和杂化薄膜微观形貌结构进行分析,并对其力学性能进行测试。结果表明:采用此种方法制备杂化PI薄膜的纳米粒子分散均匀,团聚现象明显降低。当二氧化硅含量4%时,分散性最好,力学性能相对优异。  相似文献   

17.
针对渗透汽化分离非质子溶剂/水体系过程中渗透性和选择性之间此升彼降的矛盾关系(trade-off效应),提出制备有机/无机杂化膜的方法。以均苯四甲酸酐(PMDA)和2,2'-双[4-4(氨基苯氧基)苯基]丙烷(BAPP)为聚酰亚胺(PI)单体,2-甲基咪唑锌(ZIF-8)为无机杂化粒子,采用两步法制备PI/ZIF-8杂化膜,并对杂化膜进行表征和渗透汽化分离性能测试。研究结果表明:ZIF-8可以为水分子提供额外的运输通道,并且引入ZIF-8增强了PI膜的耐溶剂性。当ZIF-8质量分数w(ZF-8)为2%时,杂化膜对于DMF质量分数w(DMF)为90%的体系,通量为242.2 g·m~(-2)·h~(-1),分离因子为17.8;对于DMAC质量分数w(DMAC)为90%的体系,通量为126.2 g·m~(-2)·h~(-1),分离因子为55.2。相比于未改性PI膜,分离DMF/H_2O和DMAc/H_2O体系中,PI/ZIF-8杂化膜的渗透通量分别提高了60%和40%。  相似文献   

18.
以3,3',4,4'-联苯四甲酸二酐为二酐单体,对苯二胺和2-(4-氨基苯基)-5-氨基苯并咪唑为二胺单体,在非质子溶剂中合成前驱体聚酰胺酸,采用干法纺丝、热环化及热拉伸制备聚(苯并咪唑-酰亚胺)(简称聚酰亚胺)纤维(PI纤维),研究了不同拉伸倍数下的PI纤维的结构及性能。结果表明:PI纤维表面光滑致密,截面为肾形;随着拉伸倍数提高,PI纤维的取向度和力学性能提高;当拉伸倍数为6.35时,其取向因子为0.81,拉伸强度为2.31 GPa,拉伸模量达到117.0 GPa;随着拉伸倍数提高,PI纤维的玻璃化转变温度(T_g)逐渐降低,T_g为324~342℃;PI纤维在500℃以上开始热分解,具有良好的热稳定性能。  相似文献   

19.
以对-亚苯基-双苯偏三酸酯二酐和4,4′-二氨基二苯醚为单体,乙酸酐和三乙胺为化学亚胺化试剂,通过改变亚胺化试剂的含量制备了一系列聚酰亚胺(PI)薄膜,并对薄膜的微观结构及性能进行了研究。研究结果表明,随着亚胺化试剂添加量的增加,聚酰胺酸脱水生成PI的反应程度逐渐增大,在后续薄膜成形过程中更有利于溶剂脱除,但是对最终PI的一级化学结构并没有影响。然而,亚胺化试剂的加入提高了最终PI薄膜的结晶度,同时改善了无定形区分子链段堆砌,使PI薄膜的玻璃化转变温度上升,热膨胀系数降低。  相似文献   

20.
《中国涂料》2019,(4):40-45
以2-丁基-2-乙基-1,3-丙二醇(BEPD)等多元醇、苯酐(PA)等多元酸聚合得到不饱和聚酯,与甲基丙烯酸-2-羟基乙酯(2-HEMA)、丙烯酸(AA)等丙烯酸类单体自由基聚合,制得羟基型水性聚酯–丙烯酸树脂杂化体。以六甲氧基甲基三聚氰胺(CYMEL 303)为固化剂,制成了水性聚酯丙烯酸树脂–氨基烤漆。通过样品分析与性能测试确定了最佳工艺及配方。结果表明,选用本体聚合制备分子量在1 500左右的不饱和聚酯,2-丁基-2-乙基-1,3-丙二醇的用量为聚酯总物质的12%,引发剂过氧化二苯甲酰(BPO)的用量为5%,丙烯酸的用量为丙烯酸单体总量的12%,丙烯酸树脂的玻璃化温度为19.8℃,水性树脂/氨基固化剂配比为3∶1,其制得的涂膜具有优良的综合性能。制得的涂料耐水性(25℃、360 h)、贮存稳定性(50℃、20 d)和耐溶剂性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号