首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
伊学农  李京梅  高玉琼 《化工进展》2022,41(8):4562-4570
利用紫外线(UV)活化高铁酸盐[Fe(Ⅵ)]能显著提高萘普生(NPX)的降解率。本文考察了不同体系、 Fe(Ⅵ)投加量、溶液pH、磷酸盐、HCO3-、Cl-以及腐殖酸(HA)对NPX降解的影响,并通过自由基淬灭实验和中间价态铁鉴定实验确定了反应的主要活性物种。通过TOC去除率确定体系降解NPX的矿化程度并利用液相色谱质谱联用仪检测降解的中间产物,提出了可能的降解路径。结果表明,反应60min后,单独Fe(Ⅵ)几乎不能降解NPX,单独UV对NPX的降解率也不到26%,而UV-Fe(Ⅵ)体系对NPX的降解率高达82%,降解过程符合准一级动力学规律(R2>0.95),反应速率常数为0.0306min-1,分别是单独UV和单独Fe(Ⅵ)降解速率的6.2倍和102倍。溶液初始pH对UV-Fe(Ⅵ)体系降解NPX有显著影响,酸性条件下有利于NPX的降解,主要是由于在不同pH下高铁酸盐和NPX的不同形态的双重作用。相同pH下,磷酸盐对NPX的降解有明显的抑制作用,主要是因为磷酸盐与Fe(Ⅵ)分解产物具有络合作用导致·O2-减少。Cl-和HA对NPX降解有不同程度的抑制作用,而HCO3-对降解有促进作用,这是因为HCO3-的加入使得溶液的pH升高从而增强了Fe(Ⅵ)的稳定性。较低的矿化率表明NPX的降解产物与其母体化合物相比难于在UV-Fe(Ⅵ)体系中去除。UV-Fe(Ⅵ)体系中的主要优势活性物种是·O2-,NPX 与·O2-主要通过电子转移机制发生脱羧反应,最终生成酸类、酮类和醚类物质。  相似文献   

2.
针对目前日益严峻的农药污染问题,本文以阿特拉津(ATZ)为目标污染物,利用高铁酸盐活化亚硫酸盐的方式对其进行降解。探究了亚硫酸盐浓度、高铁酸盐浓度、ATZ浓度、pH以及亚硫酸盐投加方式对ATZ去除率的影响。研究结果表明,在pH为7、高铁酸盐浓度为100μmol/L、亚硫酸盐浓度为400μmol/L、ATZ的浓度为5μmol/L的条件下,10s时间内可以去除95%的ATZ。利用自由基淬灭实验对体系中的活性物质进行鉴定,结果表明,高铁酸盐-亚硫酸盐体系中起主要作用的是硫酸根自由基(SO4·-),其对ATZ降解的贡献约占53%;其次是羟基自由基(·OH),约占36%。通过改变亚硫酸盐投加方式,减少了SO4·-的自我消耗,提高了高铁酸盐-亚硫酸盐降解ATZ的效率。这些实验结果有助于高铁酸盐-亚硫酸盐体系的实际水处理应用。  相似文献   

3.
徐天缘  郑茜  王连娟  陈婷  魏鑫鹏 《化工进展》2022,41(6):3314-3323
焦粉作为焦化/煤化企业的低附加值副产物,用作污染控制材料是其高价值应用的一条重要途径。本文对焦粉形貌与成分进行表征分析,通过苯胺降解动力学和影响因素之间的交互作用评估焦粉活化过硫酸盐的催化性能,并初步探讨了相关机理。表征结果显示焦粉表面粗糙,有清晰的孔隙。活性测试结果显示,1g/L焦粉可以高效活化5mmol/L过硫酸盐降解20mg/L苯胺,反应120min后苯胺去除率高于99%,其中灰分对苯胺降解无贡献。增加焦粉剂量和过硫酸盐浓度均可提高苯胺的降解效率。焦粉在pH 3~11范围内均可高效活化过硫酸盐降解苯胺,去除率维持在83%以上。此外,焦粉具有应用于修复复杂水体中有机污染物的潜能,在Cl-、HCO3-和SO42-干扰下,体系中苯胺去除率维持在90%以上。响应曲面分析表明,焦粉可以高效活化过硫酸盐降解苯胺,且焦粉剂量与过硫酸钠浓度的交互作用强,二者决定了苯胺的最终去除率。自由基淬灭实验证明焦粉活化过硫酸盐降解苯胺过程中,主要产生的活性氧物种为O2·-和·OH。本文的研究结果可为低附加值的煤基副产物高价值应用提供指导,并为进一步发展环境友好的水污染控制与资源化技术提供新契机。  相似文献   

4.
采用溶剂热法后高温煅烧的方式制备了铁钴双金属复合催化剂,用以活化过一硫酸盐(PMS)降解偶氮染料金橙Ⅱ(OGⅡ)。通过X射线衍射仪、扫描电子显微镜、振动样品磁强计和X射线光电子能谱仪等仪器对复合材料进行了表征。考察了钴复合量、不同去除体系、催化剂投加量、PMS投加量、污染物浓度、pH和共存阴离子等因素对OGⅡ降解效果的影响,并探究了铁钴复合催化剂重复利用的效果。实验结果表明,铁钴复合催化剂可以有效活化PMS降解OGⅡ,在n(Co3O4)∶n(Fe2O3)=0.1、催化剂投加量为1.0 g/L、PMS投加量为0.4 mmol/L、OGⅡ浓度为30 mg/L、溶液pH为6.2的条件下,反应60 min后,OGⅡ的降解率达到了95.81%,其降解过程符合准一级反应动力学模型,最大反应速率常数为0.0491 min-1。复合催化剂使用4次后对OGⅡ仍有68.85%的降解率。·SO4-、·OH和1O2是反应体系产生的活性氧物种,1O2在OGⅡ的降解中起主要作用。  相似文献   

5.
采用溶剂热法后高温煅烧的方式制备了铁钴双金属复合催化剂,用以活化过一硫酸盐(PMS)降解偶氮染料金橙Ⅱ(OGⅡ)。通过X射线衍射仪、扫描电子显微镜、振动样品磁强计和X射线光电子能谱仪等仪器对复合材料进行了表征。考察了钴复合量、不同去除体系、催化剂投加量、PMS投加量、污染物浓度、pH和共存阴离子等因素对OGⅡ降解效果的影响,并探究了铁钴复合催化剂重复利用的效果。实验结果表明,铁钴复合催化剂可以有效活化PMS降解OGⅡ,在n(Co3O4)∶n(Fe2O3)=0.1、催化剂投加量为1.0 g/L、PMS投加量为0.4 mmol/L、OGⅡ浓度为30 mg/L、溶液pH为6.2的条件下,反应60 min后,OGⅡ的降解率达到了95.81%,其降解过程符合准一级反应动力学模型,最大反应速率常数为0.0491 min-1。复合催化剂使用4次后对OGⅡ仍有68.85%的降解率。·SO4-、·OH和1O2是反应体系产生的活性氧物种,1O2在OGⅡ的降解中起主要作用。  相似文献   

6.
过碳酸钠是过氧化氢与碳酸钠的加成化合物,具有在存储、运输和使用过程中安全稳定的优点。本文采用共沉淀-高温煅烧法制备纳米片状Mn2O3@α-Fe3O4,活化过碳酸钠(SPC)产生自由基氧化降解偶氮染料活性黑5(RBK5)。采用透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)及比表面积测试(BET)表征制备的纳米片状Mn2O3@α-Fe3O4催化剂,分别探究催化剂投加量、过碳酸钠浓度、初始pH及RBK5溶液浓度对降解效率的影响。当催化剂投加量为0.3g/L、过碳酸钠浓度为1.0mmol/L、初始pH为3、反应时间为90min时,RBK5的降解效率达88%,反应过程符合拟一级动力学(R2>0.9)。Mn2O3@α-Fe3O4/过碳酸钠体系中起氧化降解作用的活性物种为·OH、CO3-·、O2-·和1O2,其中·OH占据主导地位,XPS反映了铁锰元素存在价态以及双金属间的协同作用,依据猝灭实验及XPS分析降解机理。  相似文献   

7.
过氧单硫酸盐(PMS)及过二硫酸盐(PDS)在工业污染场地修复中应用广泛,通过活化作用能够产生氧化性更强的·SO4-自由基,从而更好地氧化降解有机污染物。本文比较了几种典型活化方式,包括紫外(UV)、碱、过渡金属、热以及含碳物质,并分析了它们的优缺点及适用条件;讨论了过硫酸盐活化机理及动力学过程;分析了无机阴离子(Cl-HCO3-/CO32-NO3-NO2-HPO42-H2PO4-)与·SO4-自由基相互作用及其对有机污染物氧化降解的影响;针对活化过硫酸盐在工业污染场地修复领域的应用,对过硫酸盐活化方法的发展趋势进行了展望。理论研究和实践表明,过硫酸盐不同活化方式为工业污染场地修复提供了多样选择,多种活化方式协同作用将是过硫酸盐高效活化氧化降解有机污染物的发展方向。由于Cl-HCO3-/CO32-抢夺·SO4-的能力较强,认为这些无机盐与有机物复合的污染场地或土壤采用PDS修复需格外谨慎选择活化方法。  相似文献   

8.
生物炭/过一硫酸盐体系同时去除Cu2+和对硝基苯胺   总被引:1,自引:0,他引:1       下载免费PDF全文
孙鹏  张凯凯  张玉  张延荣 《化工进展》2020,39(10):4268-4274
目前,重金属离子和有机污染物共存的废水处理是一个世界性的重大问题,对环境保护具有重要的意义。本研究以农业废弃物向日葵秸秆为原料,制备了一种生物炭(BC),用以活化过一硫酸盐(PMS)。BC/PMS体系实现了对水中重金属Cu2+和有机污染物对硝基苯胺(PNA)的同时去除。探究了pH、BC投加量和PMS浓度等反应条件对同时去除Cu2+和PNA的影响。研究表明,在BC=2.0g/L、PMS=1.0mmol/L、PNA=20.0mg/L、Cu2+=2.0mg/L和pH=3.0条件下,60min时Cu2+和PNA同时去除效率分别为90.00%和100.00%;Cu2+被BC/PMS体系吸附去除的同时也显著地促进了PNA的降解去除。自由基猝灭实验和电子顺磁共振光谱(EPR)实验表明,BC/PMS/Cu2+/PNA体系降解PNA为自由基反应和非自由基反应共存过程,且以非自由基反应为主导;自由基反应是基于Cu2+活化PMS产生SO4·-和?OH,非自由基反应可归因于BC活化PMS产生活性物种1O2。  相似文献   

9.
亚硫酸盐作为一种脱硫副产物,具有价格低廉、毒性低、制备简便等优点,可被活化产生硫酸根自由基(SO4·-)、亚硫酸根自由基(SO3·-)、过氧硫酸根自由基(SO5·-)和羟基自由基(OH?)等多种氧化电位高的活性物质,能够快速高效地氧化降解各种有机污染物。因此,亚硫酸盐被视为更经济环保的过硫酸盐替代品。本文综述了亚硫酸盐活化技术的研究进展,包括过渡金属离子活化、紫外光辐射活化和含氧金属酸盐活化等;详细介绍了过渡金属活化亚硫酸盐发生自由基链式反应和紫外辐射亚硫酸盐光解生成自由基等亚硫酸盐活化机理;并归纳总结了亚硫酸盐高级氧化法处理各类有机废水的研究现状。目前,该技术在处理多种难降解废水方面有着显著的效果,但大多数研究仍停留在实验阶段,且处理对象单一,在实际废水处理方面研究尚少。  相似文献   

10.
为探明纳米零价铁(nZVI)/BC与(Cu-Pd)/BC联合作用对水中硝酸盐的去除机理,分别负载纳米金属于小麦秸秆生物炭上,制得nZVI/BC与(Cu-Pd)/BC两种复合材料,并通过SEM、TEM、EDS、XRD对材料进行表征分析,从nZVI/BC的SEM中可以看出,纳米零价铁较好地分散在生物炭(BC)上面;从(Cu-Pd)/BC的TEM图中看出,纳米铜钯均有效地负载于BC上且分布均匀。结果表明,nZVI/BC:(Cu-Pd)/BC体系中硝酸盐的去除率可达100%,氮气转化率达到42%。当pH为4.05时硝酸盐去除效果最佳;硝酸盐去除率随着初始浓度的升高而降低;溶解氧的存在会降低硝酸盐去除率;存在PO43-对去除效率的影响最大,去除率降低至15.8%,而CO32-和SO42-的存在对去除氮的影响不大,去除率接近100%。动力学研究表明:在最佳条件下,nZVI/BC与(Cu-Pd)/BC联合作用对NO3--N、NO2--N的去除均符合准二级吸附动力学模型,反应过程以还原反应为主。  相似文献   

11.
污水厂排水中硝酸盐氮(NO3-N)浓度偏高,难利用常规生物脱氮工艺实现NO3-N的深度脱除。以铁基质高效催化脱氮载体为污水中NO3-N的脱除材料,探究不同铁基质催化活性、pH和NO3-N浓度等对污水中NO3-N去除的影响及机制。研究结果表明:添加催化剂D的铁基质高效催化脱氮载体可脱除92.23%的NO3-N,调节污水为酸性至中性条件时,其NO3-N去除率均可达到92.09%以上,且氨氮(NH4+-N)积累量先升高后降低;当污水为碱性条件时,NO3-N的去除率亦可达86.13%以上,且在碱性条件时无NH4+-N积累;原水中NO3-N的浓度变化(20~70 mg·L-1)对铁基质高效催化脱氮载体的脱氮性能影响较小,NO3-N去除率均达到96.11%以上。与催化剂A、B和C相比,添加催化剂D的铁基质高效催化脱氮载体脱氮速率最快,NO3-N降解反应过程符合一级反应动力学方程,反应速率常数k=0.0170 min–1。  相似文献   

12.
陈磊  田科  曾力  张俊丰  黄妍  何峰 《化工进展》2023,42(1):480-487
由于HPF法焦炉煤气脱硫工艺会产生危害极大的脱硫废杂盐,本文以回避传统提盐法存在的工艺流程长、产品收率低等难题为出发点,提出硫酸铜沉淀硫氰酸根、微纳米气泡氧化硫代硫酸根、石灰表面强制沉淀硫酸根同步制氨的新技术。在实验室配制模拟脱硫废杂盐,优化新技术反应条件,实验表明,当[Cu2+]∶[SCN-]摩尔比为1.2、温度为40℃、初始废液硫氰酸根浓度大于300g/L、反应80min后,SCN-最佳去除率为99.20%;当pH=1、温度为50℃、初始废液硫代硫酸根浓度为50g/L、反应420min后,S2O32-去除率为95.18%;当[Ca2+]∶[SO42-]摩尔比为1.5、反应温度为20℃、初始废液硫酸根浓度为500g/L,并加入5g直径5mm PP球充当研磨介质,反应240min后,SO42-去除率为91.11%。  相似文献   

13.
韦佳敏  刘文如  程洁红  沈耀良 《化工进展》2020,39(11):4608-4618
反硝化除磷(denitrifying phosphorus removal,DPR)工艺较传统脱氮除磷工艺具有节省曝气能耗、高效利用碳源、低污泥产量等优点而得到广泛的研究。本文综述了近年来在这一领域的研究进展,包括反硝化除磷菌(DPAOs)微生物学、碳源种类、pH、亚硝酸盐浓度及游离亚硝酸(free nitrous acid,FNA)、污泥龄(sludge retention time,SRT)、C/P比及mgNOx--N/mgPO43--P、聚糖菌(GAOs)等。大多数研究只关注了聚磷菌(PAOs)和GAOs之间的竞争关系,而通过GAOs作用的内碳源部分反硝化(endogenous partial-denitrification,EPD),能够将NO3--N转化为NO2--N,将进一步降低同步脱氮除磷对碳源的需求。反硝化除磷的新工艺符合我国低C/N值的污水现状,SNADPR工艺是将部分硝化、厌氧氨氧化、反硝化与反硝化除磷相结合的先进脱氮除磷工艺,Anammox-EPDPR工艺协同厌氧氨氧化、EPD和反硝化除磷,充分利用GAOs内碳源的代谢作用,以产生NO2--N,减轻DPAOs和anammox菌对电子受体的竞争。以NO2--N为电子受体的短程反硝化除磷与新型脱氮工艺的耦合将成为实现污水高效节能的同步脱氮除磷的新方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号