首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human stem-cell factor (hSCF) stimulates the survival, proliferation, and differentiation of hematopoietic cells by binding to the c-Kit receptor. Various applications of hSCF require the efficient and reliable production of hSCF. hSCF exists in three forms: as two membrane-spanning proteins hSCF248 and hSCF229 and truncated soluble N-terminal protein hSCF164. hSCF164 is known to be insoluble when expressed in Escherichia coli cytoplasm, requiring a complex refolding procedure. The activity of hSCF248 has never been studied. Here, we investigated novel production methods for recombinant hSCF164 and hSCF248 without the refolding process. To increase the solubility of hSCF164, maltose-binding protein (MBP) and protein disulfide isomerase b’a’ domain (PDIb’a’) tags were attached to the N-terminus of hSCF164. These fusion proteins were overexpressed in soluble form in the Origami 2(DE3) E. coli strain. These solubilization effects were enhanced at a low temperature. His-hSCF248, the poly-His tagged form of hSCF248, was expressed in a highly soluble form without a solubilization tag protein, which was unexpected because His-hSCF248 contains a transmembrane domain. hSCF164 was purified using affinity and ion-exchange chromatography, and His-hSCF248 was purified by ion-exchange and gel filtration chromatography. The purified proteins stimulated the proliferation of TF-1 cells. Interestingly, the EC50 value of His-hSCF248 was 1 pg/mL, 100-fold lower than 9 ng/mL hSCF164. Additionally, His-hSCF248 decreased the doubling time, increased the proportion of S and G2/M stages in the cell cycle, and increased the c-Myc expression at a 1000-fold lower concentration than hSCF164. In conclusion, His-hSCF248 was expressed in a soluble form in E. coli and had stronger activity than hSCF164. The molecular chaperone, MBP, enabled the soluble overexpression of hSCF164.  相似文献   

2.
Methylated flavonoids are promising pharmaceutical agents due to their improved metabolic stability and increased activity compared to unmethylated forms. The biotransformation in cultures of entomopathogenic filamentous fungi is a valuable method to obtain glycosylated flavones and flavanones with increased aqueous solubility and bioavailability. In the present study, we combined chemical synthesis and biotransformation to obtain methylated and glycosylated flavonoid derivatives. In the first step, we synthesized 2′-methylflavanone and 2′-methylflavone. Afterwards, both compounds were biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5 and Isaria fumosorosea KCH J2. We determined the structures of biotransformation products based on NMR spectroscopy. Biotransformations of 2′-methyflavanone in the culture of B. bassiana KCH J1.5 resulted in three glycosylated flavanones: 2′-methylflavanone 6-O-β-d-(4″-O-methyl)-glucopyranoside, 3′-hydroxy-2′-methylflavanone 6-O-β-d-(4″-O-methyl)-glucopyranoside, and 2-(2′-methylphenyl)-chromane 4-O-β-d-(4″-O-methyl)-glucopyranoside, whereas in the culture of I. fumosorosea KCH J2, two other products were obtained: 2′-methylflavanone 3′-O-β-d-(4″-O-methyl)-glucopyranoside and 2-methylbenzoic acid 4-O-β-d-(4′-O-methyl)-glucopyranoside. 2′-Methylflavone was effectively biotransformed only by I. fumosorosea KCH J2 into three derivatives: 2′-methylflavone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, 2′-methylflavone 4′-O-β-d-(4″-O-methyl)-glucopyranoside, and 2′-methylflavone 5′-O-β-d-(4″-O-methyl)-glucopyranoside. All obtained glycosylated flavonoids have not been described in the literature until now and need further research on their biological activity and pharmacological efficacy as potential drugs.  相似文献   

3.
目的克隆幽门螺杆菌尿素酶B亚单位(UreB)基因,构建原核表达载体,并进行高效表达。方法以幽门螺杆菌基因组DNA为模板,PCR扩增UreB基因,双酶切后,与质粒pET-22b(+)连接,构建表达载体pET-22b(+)/UreB,分别转化E.coliBL21(DE3)、Origam(iDE3)和Rossetta(DE3),经IPTG诱导后,进行SDS-PAGE和Western blot分析。结果经酶切及测序,证明幽门螺杆菌UreB基因的原核表达载体构建正确。3种重组菌的诱导表达产物经SDS-PAGE分析,均可见相对分子质量为64000的目的蛋白条带,Rossetta(DE3)重组菌目的蛋白表达量最高,约占菌体蛋白的35%。Western blot结果表明,表达的目的蛋白具有良好的反应原性。结论已成功克隆了幽门螺杆菌UreB基因,并在大肠杆菌Rossetta(DE3)中获得了高效表达。  相似文献   

4.
In this study, synthetic allomelanin was prepared from wild-type Streptomyces glaucescens and recombinant Escherichia coli BL21(DE3) strains. S. glaucescens could produce 125.25 ± 6.01 mg/L of melanin with a supply of 5 mM caffeic acid within 144 h. The ABTS radical scavenging capacity of S. glaucescens melanin was determined to be approximately 7.89 mg/mL of IC50 value, which was comparable to L-tyrosine-based eumelanin. The isolated melanin was used in cotton fabric dyeing, and the effect of copper ions, laccase enzyme treatment, and the dyeing cycle on dyeing performance was investigated. Interestingly, dyeing fastness was greatly improved upon treatment with the laccase enzyme during the cotton dyeing process. Besides, the supply of C5-diamine, which was reported to lead to more complex crosslinking between melanin units, to caffeic acid-based melanin synthesis was also investigated for higher production and novel functionalities. To facilitate the supply of caffeic acid and C5-diamine, E. coli strains expressing each or combinations of tyrosine ammonia lyase/p-coumarate 3-hydroxylase, feruloyl-CoA synthetase/enoyl-CoA hydratase/aldolase, and tyrosinase/lysine decarboxylase enzymes were prepared and investigated for their eumelanin, C5-diamine, and allomelanin production from L-tyrosine and L-lysine, respectively. Finally, H-NMR, FT-IR, and MALDI-TOF analysis of the synthetic melanin pigments were attempted to obtain the chemical information.  相似文献   

5.
6.
Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5′ terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5′ TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5′ TR of JEV and demonstrated its direct interaction with recombinant DDX3X (Kd of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5′ and 3′ TRs of flaviviruses, we investigated if the ZIKV 5′ TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5′ TR with a Kd of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5′ TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication  相似文献   

7.
As a result of external and endocellular physical-chemical factors, every day approximately ~105 DNA lesions might be formed in each human cell. During evolution, living organisms have developed numerous repair systems, of which Base Excision Repair (BER) is the most common. 5′,8-cyclo-2′-deoxyadenosine (cdA) is a tandem lesion that is removed by the Nucleotide Excision Repair (NER) mechanism. Previously, it was assumed that BER machinery was not able to remove (5′S)cdA from the genome. In this study; however, it has been demonstrated that, if (5′S)cdA is a part of a single-stranded clustered DNA lesion, it can be removed from ds-DNA by BER. The above is theoretically possible in two cases: (A) When, during repair, clustered lesions form Okazaki-like fragments; or (B) when the (5′S)cdA moiety is located in the oligonucleotide strand on the 3′-end side of the adjacent DNA damage site, but not when it appears at the opposite 5′-end side. To explain this phenomenon, pure enzymes involved in BER were used (polymerase β (Polβ), a Proliferating Cell Nuclear Antigen (PCNA), and the X-Ray Repair Cross-Complementing Protein 1 (XRCC1)), as well as the Nuclear Extract (NE) from xrs5 cells. It has been found that Polβ can effectively elongate the primer strand in the presence of XRCC1 or PCNA. Moreover, supplementation of the NE from xrs5 cells with Polβ (artificial Polβ overexpression) forced oligonucleotide repair via BER in all the discussed cases.  相似文献   

8.
Beetle luciferases produce bioluminescence (BL) colors ranging from green to red, having been extensively used for many bioanalytical purposes, including bioimaging of pathogen infections and metastasis proliferation in living animal models and cell culture. For bioimaging purposes in mammalian tissues, red bioluminescence is preferred, due to the lower self-absorption of light at longer wavelengths by hemoglobin, myoglobin and melanin. Red bioluminescence is naturally produced only by Phrixothrix hirtus railroad worm luciferase (PxRE), and by some engineered beetle luciferases. However, Far-Red (FR) and Near-Infrared (NIR) bioluminescence is best suited for bioimaging in mammalian tissues due to its higher penetrability. Although some FR and NIR emitting luciferin analogs have been already developed, they usually emit much lower bioluminescence activity when compared to the original luciferin-luciferases. Using site-directed mutagenesis of PxRE luciferase in combination with 6′-modified amino-luciferin analogs, we finally selected novel FR combinations displaying BL ranging from 636–655 nm. Among them, the combination of PxRE-R215K mutant with 6′-(1-pyrrolidinyl)luciferin proved to be the best combination, displaying the highest BL activity with a catalytic efficiency ~2.5 times higher than the combination with native firefly luciferin, producing the second most FR-shifted bioluminescence (650 nm), being several orders of magnitude brighter than commercial AkaLumine with firefly luciferase. Such combination also showed higher thermostability, slower BL decay time and better penetrability across bacterial cell membranes, resulting in ~3 times higher in vivo BL activity in bacterial cells than with firefly luciferin. Overall, this is the brightest FR emitting combination ever reported, and is very promising for bioimaging purposes in mammalian tissues.  相似文献   

9.
A new series of 1,4-bis(1-(5-(aryldiazenyl)thiazol-2-yl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)benzenes 3a–i were synthesized via reaction of 5,5′-(1,4-phenylene)bis(3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide) (1) with hydrazonoyl halides 2a–i. In addition, reaction of 1 with ethyl chloroacetate afforded bis-thiazolone derivative 8 as the end product. Reaction of compound 8 with methyl glyoxalate gave bis-thiazolone derivative 10. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences and their alternative syntheses. All the synthesized compounds were evaluated for their anti-tumor activities against hepatocellular carcinoma (HepG2) cell lines, and the results revealed promising activities of compounds 3g, 5e, 3e, 10, 5f, 3i, and 3f with IC50 equal 1.37 ± 0.15, 1.41 ± 0.17, 1.62 ± 0.20, 1.86 ± 0.20, 1.93 ± 0.08, 2.03 ± 0.25, and 2.09 ± 0.19 μM, respectively.  相似文献   

10.
Flavonoids, including chalcones, are more stable and bioavailable in the form of glycosylated and methylated derivatives. The combined chemical and biotechnological methods can be applied to obtain such compounds. In the present study, 2′-hydroxy-2-methylchalcone was synthesized and biotransformed in the cultures of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2 and Isaria farinosa KCH J2.6, which have been known for their extensive enzymatic system and ability to perform glycosylation of flavonoids. As a result, five new glycosylated dihydrochalcones were obtained. Biotransformation of 2′-hydroxy-2-methylchalcone by B. bassiana KCH J1.5 resulted in four glycosylated dihydrochalcones: 2′-hydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, 2′,3-dihydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, 2′-hydroxy-2-hydroxymethyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, and 2′,4-dihydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside. In the culture of I. fumosorosea KCH J2 only one product was formed—3-hydroxy-2-methyldihydrochalcone 2′-O-β-d-(4″-O-methyl)-glucopyranoside. Biotransformation performed by I. farinosa KCH J2.6 resulted in the formation of two products: 2′-hydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside and 2′,3-dihydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside. The structures of all obtained products were established based on the NMR spectroscopy. All products mentioned above may be used in further studies as potentially bioactive compounds with improved stability and bioavailability. These compounds can be considered as flavor enhancers and potential sweeteners.  相似文献   

11.
目的 优化内源性血管生成抑制因子Arresten基因的原核表达条件。方法从健康产妇的胎盘组织中提取总RNA,RT-PCR扩增Arresten基因,构建重组表达质粒pBV220-Arr,分别转化感受态E.coli JM109、DH5α、BL21、BL21(DE3),诱导表达,SDS-PAGE分析表达产物,筛选出最优表达菌种,并对其菌体培养温度和时间、诱导温度和时间及溶解氧量进行优化。结果重组表达质粒pBV220-Arr经酶切及测序证明构建正确,重组表达质粒在E.coli JM109、DH5α、BL21、BL21(DE3)4种菌中诱导2和4 h,均能表达出Arresten蛋白,诱导表达4 h,E.coli BL21(DE3)目的 蛋白表达量最高,湿菌重也明显大于其他菌种。E.coli BL21(DE3)/pBV220-Arr的最佳表达条件为:在500 ml培养瓶中加入100 ml LB氨苄阳性培养基,菌体于30℃培养4 h后,再42℃诱导表达4 h。结论优化了Arresten基因工程菌的表达条件,为重组Arresten蛋白的大量表达提供了参考。  相似文献   

12.
The oregano leaves’ extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl–methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV–Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.  相似文献   

13.
4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.  相似文献   

14.
In this work, we used ωB97XD density functional and 6-31++G** basis set to study the structure, electron affinity, populations via Boltzmann distribution, and one-electron reduction potentials (E°) of 2′-deoxyribose sugar radicals in aqueous phase by considering 2′-deoxyguanosine and 2′-deoxythymidine as a model of DNA. The calculation predicted the relative stability of sugar radicals in the order C4′ > C1′ > C5′ > C3′ > C2′. The Boltzmann distribution populations based on the relative stability of the sugar radicals were not those found for ionizing radiation or OH-radical attack and are good evidence the kinetic mechanisms of the processes drive the products formed. The adiabatic electron affinities of these sugar radicals were in the range 2.6–3.3 eV which is higher than the canonical DNA bases. The sugar radicals reduction potentials (E°) without protonation (−1.8 to −1.2 V) were also significantly higher than the bases. Thus the sugar radicals will be far more readily reduced by solvated electrons than the DNA bases. In the aqueous phase, these one-electron reduced sugar radicals (anions) are protonated from solvent and thus are efficiently repaired via the “electron-induced proton transfer mechanism”. The calculation shows that, in comparison to efficient repair of sugar radicals by the electron-induced proton transfer mechanism, the repair of the cyclopurine lesion, 5′,8-cyclo-2′-dG, would involve a substantial barrier.  相似文献   

15.
It was proven that sterols subjected to high-temperature treatment can be concatenated, which results in polymeric structures, e.g., 3β,3′β-disteryl ethers. However, it was also proven that due to increased temperature in oxygen-containing conditions, sterols can undergo various oxidation reactions. This study aimed to prove the existence and perform quantitative analysis of oxidized 3β,3′β-disteryl ethers, which could form during high-temperature treatment of sterol-rich samples. Samples were heated at 180, 200 and 220 °C for 0.5 to 4 h. Quantitative analyses of the oxidized 3β,3′β-disteryl ethers were performed with liquid extraction, solid-phase extraction and liquid chromatography coupled with mass spectrometry. Additionally, to perform this analysis, the appropriate standards of all oxidized 3β,3′β-disteryl ethers were prepared. Eighteen various oxidized 3β,3′β-disteryl ethers (derivatives of 3β,3′β-dicholesteryl ether, 3β,3′β-disitosteryl ether and 3β,3′β-distigmasteryl ether) were prepared. Additionally, the influence of metal compounds on the mechanism of ether formation at high temperatures was investigated.  相似文献   

16.
9, 10-bis(3,5-dihydroxyphenyl)anthracene (BDHA) and 2,2′,4,4′-tetrahydroxybenzophenone (THB) are crystallized with bipyridine bases 4,4′-bipyridyl (bipy), 1,2-bis(4-pyridyl)ethane (bipy-eta), 1,2-di(4-pyridyl)ethylene (dipy-ete), 1,3-di(4-pyridyl)propane (dipy-pra), 4,4′-dipyridyl sulfide (dipy-sul), and 4,4′-dipyridyl disulfide (dipy-dis) to afford molecular complexes (BDHA)·(bipy)21, (BDHA) · (bipy-eta)22, (BDHA)0.5· (dipy-pra) ·CH3CH2OH 3, (BDHA)0.5· (dipy-sul) ·H2O 4, (BDHA)0.5· (dipy-dis) ·CH3CH2OH 5 and (THB) · (dipy-ete)2·H2O 6. The crystal structures of 1–6 have been determined by single-crystal X-ray diffraction. All these molecular complexes exhibit polymeric supramolecular structures via O–H· · ·N or O–H· · ·O hydrogen-bonding. 1 and 2 form infinitely rectangular macrocycles linked with one another, whose sizes are ca.12.477 å × 4.802 å and ca.14.575 å × 4.809 å, respectively. 3, 5 and 6 form the one-dimensional zigzag chain structure. 4 forms a ladder structure, and two dipy-sul molecules were included in a frame.  相似文献   

17.
Heart failure is the end-stage of all cardiovascular diseases with a ~25% 5-year survival rate, and insufficient mitochondrial energy production to meet myocardial demand is the hallmark of heart failure. Mitochondrial components involved in the regulation of ATP production remain to be fully elucidated. Recently, roles of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) in the pathophysiological processes of heart diseases have emerged, implicated by evidence that mitochondrial CNPase proteins are associated with mitochondrial integrity under metabolic stress. In this study, a zebrafish heart failure model was established, by employing antisense morpholino oligonucleotides and the CRISPR-Cas9 gene-editing system, which recapitulates heart failure phenotypes including heart dysfunction, pericardial edema, ventricular enlargement, bradycardia, and premature death. The translational implications of CNPase in the pathophysiological process of heart failure were tested in a pressure overload-induced heart hypertrophy model, which was carried out in rats through transverse abdominal aorta constriction (TAAC). AAV9-mediated myocardial delivery of CNPase mitigated the hypertrophic response through the specific hydrolysis of 2′-3′-cyclic nucleotides, supported by the decrease of cardiac hypertrophy and fibrosis, the integrity of mitochondrial ultrastructure, and indicators of heart contractility in the AAV9-TAAC group. Finally, the biometrics of a mitochondrial respiration assay carried out on a Seahorse cellular energy analyzer demonstrated that CNPase protects mitochondrial respiration and ATP production from AngII-induced metabolic stress. In summary, this study provides mechanistic insights into CNPase-2′,3′-cyclic nucleotide metabolism that protects the heart from energy starvation and suggests novel therapeutic approaches to treat heart failure by targeting CNPase activity.  相似文献   

18.
A series of novel oxyalkylchalcones substituted with alkyl groups were designed and synthesized, and the antioomycete activity of the series was evaluated in vitro against Saprolegnia strains. All tested O-alkylchalcones were synthesized by means of nucleophilic substitution from the natural compound 2′,4′-dihydroxychalcone (1) and the respective alkyl bromide. The natural chalcone (1) and 10 synthetic oxyalkylchalcones (2–11) were tested against Saprolegnia parasitica and Saprolegnia australis. Among synthetic analogs, 2-hydroxy,4-farnesyloxychalcone (11) showed the most potent activity against Saprolegnia sp., with MIC and MOC values of 125 µg/mL (similar to bronopol at 150 µg/mL) and 175 µg/mL, respectively; however, 2′,4′-dihydroxychalcone (1) was the strongest and most active molecule, with MIC and MOC values of 6.25 µg/mL and 12.5 µg/mL.  相似文献   

19.
The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5′UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.  相似文献   

20.
In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase—GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of “more resistant” E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号