首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Difluoro(oxalato)borate (ODFB) is a less symmetric borate anion, which makes it possible to increase the solubility of tetraethylammonium (TEA+) salt in propylene carbonate (PC) and improve the capacitance of electrochemical double-layer capacitors (EDLCs). The use of TEAODFB with PC solvent in EDLCs was investigated in the paper. The results show that TEAODFB has good solubility in PC, and the conductivity is comparable to TEABF4/PC electrolyte. When the molar concentration of TEAODFB reaches to 1.6 M, the TEAODFB/PC electrolyte has superior conductivity of 14.46 mS cm−1 and good capacitor characteristics. Despite the less accessible to the electrode and low energy density was achieved, the specific capacitance of 1.6 M TEAODFB/PC electrolyte is 21.4 F g−1 at 1 A g−1, and the energy density and power density were comparable to 1 M TEABF4/PC electrolyte at 1–5 A g−1. Temperature characteristic was also tested by 3.3 F circular capacitors from −40 to 60 °C, the result demonstrates that capacitors using 1.6 M TEAODFB/PC electrolyte show much higher capacitance and energy density at the investigated temperatures, and the discharge capacitance of capacitors using 1.6 M TEAODFB/PC electrolyte varies with the temperature less than that of 1 M TEABF4/PC electrolyte.  相似文献   

2.
The conductivity of composite solid polymer electrolyte (SPE) made of different compositions of poly(ethylene oxide) (PEO), LiClO4 and fiber was investigated in this study. Results obtained through alternating current (AC) impedance measurements demonstrated that the conductivity of the SPE was much improved by blending fiber into it. Moreover, increasing the composition of fiber added leads, thereby increasing the conductivity of the composite SPE. The average conductivity of the composite SPE was 10−4 S/cm at 25 °C. Performance in thermal properties was also investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) experiments. Although the mechanical strength of the composite SPE was not better than that of other materials as expected, the fiber added made it more stable.  相似文献   

3.
Chun-Guey Wu  Ming-I Lu 《Polymer》2005,46(16):5929-5938
Highly conducting porous polymer electrolytes comprised of poly(vinylidene-fluoride-co-hexafluoropropylene) (PVdF-HFP), polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (P123), ethylene carbonate (EC), propylene carbonate (PC), and LiClO4 were fabricated. The PVdF-HFP/P123 hybrid polymer membranes were made with a phase inverse method and the electrolyte solution uptake was carried out in glove box to avoid the moisture contamination. It was found that when a small amount of polymer surfactant (P123) was blended into the PVdF-HFP, mesopores with well-defined sizes were formed. Impedance spectroscopy showed that the room temperature conductivity of (PVdF-HFP)/P123 polymer electrolytes increased as the content of P123 increased up to 4×10−3 S/cm. Nitrogen adsorption isotherms, electrolyte solution uptake, porosity measurements, and SEM micrographs showed that the enhanced conductivity was due to increase the pore volume, pore density, and electrolyte uptake. The highest conduction was found when the weight ratio of P123 to PVdF-HFP was 70%, when big channels were formed in the hybrid polymer membrane. Furthermore, blending P123 in PVDF-HFP reduced the pore size of polymer membrane, therefore, the solution leakage was also reduced. These polymer electrolytes were stable up to 4.5 V (vs Li/Li+) and the performance of the model lithium ion battery made by sandwiching the polymer electrolyte between a LiCoO2 anode and a MCMB cathode, showed great promise for the use of these polymer electrolytes in lithium ion batteries.  相似文献   

4.
Highly ion-conductive solid polymer electrolyte (SPE) based on polyethylene (PE) non-woven matrix is prepared by filling poly(ethylene glycol) (PEG)-based crosslinked electrolyte inside the pores of the non-woven matrix. The PE non-woven matrix not only shows good mechanical strength for SPE to be a free-standing film, but also has very porous structure for high ion conductivity. The ion conductivity of SPE based on PE non-woven matrix can be enhanced by adding sufficient non-volatile plasticizer such as poly(ethylene glycol) dimethyl ether (PEGDME) into ion conduction phase without sacrificing mechanical strength. SPE with 20 wt.% crosslinking agent and 80 wt.% non-volatile plasticizer shows 3.1 × 10−4 S cm−1 at room temperature (20 °C), to our knowledge, which is the highest level for SPEs. It is also electrochemically stable up to 5.2 V and has high transference number about 0.52 due to the introduction of anion receptor as an additive. The interfacial resistance between Li electrode and SPE is low enough to perform charge/discharge test of unit cell consisting of LiCoO2/SPE/Li at room temperature. The discharge capacity of the unit cell shows 87% of theoretical value with 86% Coulombic efficiency.  相似文献   

5.
《Ceramics International》2023,49(3):4473-4481
All solid-state lithium batteries (ASS-LBs) with polymer-based solid electrolytes are a prospective contender for the next-generation batteries because of their high energy density, flexibility, and safety. Among all-polymer electrolytes, PEO-based solid polymer electrolytes received huge consideration as they can dissolve various Li salts. However, the development of an ideal PEO-based solid polymer electrolyte is hindered by its insufficient tensile strength and lower ionic conductivity due to its semi-crystalline and soft chain structure. In order to lower the crystallization and improve the performance of PEO-based solid polymer electrolyte, tungsten trioxide (WO3) nanofillers were introduced into PEO matrix. Herein, a PEO20/LiTFSI/x-WO3 (PELI-xW) (x = 0%, 2.5%, 5%, 10%) solid composite polymer electrolyte was prepared by the tape casting method. The solid composite polymer electrolyte containing 5 wt% WO3 nanofillers achieved the highest ionic conductivity of 7.4 × 10-4 S cm-1 at 60 °C. It also confirms a higher Li-ion transference number of 0.42, good electrochemical stability of 4.3V, and higher tensile strength than a PEO/LiTFSI (PELI-0W) fillers-free electrolyte. Meanwhile, the LiFePO4│PELI-xW│Li ASS-LBs demonstrated high performance and cyclability. Based on these findings, it can be considered a feasible strategy for the construction of efficient and flexible PEO-based solid polymer electrolytes for next-generation solid-state batteries.  相似文献   

6.
This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 × 10−3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF6-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (Ri) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO2) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 °C.  相似文献   

7.
A series of solid polymer electrolytes (SPEs) based on comb‐like nonionic waterborne polyurethane (NWPU) and LiClO4 are fabricated via a solvent free process. The NWPU‐based SPEs have sufficient mechanical strength which is beneficial to their dimensional stability. Differential scanning calorimetry analysis indicates that the phase separation occurs by the addition of the lithium salt. Scanning electron microscopy and X‐ray diffraction analyses illustrate the good compatibility between LiClO4 and NWPU. Fourier transform infrared study reveals the complicated interactions among lithium ions with the amide, carbonyl and ether groups in such SPEs. AC impedance spectroscopy shows the conductivity of the SPEs exhibiting a linear Arrhenius relationship with temperature. The ionic conductivity of the SPE with the mass content of 15% LiClO4 (SPE15) can reach 5.44 × 10?6 S cm?1 at 40 °C and 2.35 ×10?3 S cm?1 at 140 °C. The SPE15 possesses a wide electrochemical stability window of 0–5 V (vs. Li+/Li) and thermal stability at 140 °C. The excellent properties of this new NWPU‐based SPE are a promising solid electrolyte candidate for all‐solid‐state lithium ion batteries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45554.  相似文献   

8.
A polymer electrolyte membrane fuel cell operational at temperatures around 150–200 °C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H3PO4-doped in a doping range from 300 to 1600 mol %. Physiochemical properties of the membrane electrolyte have been investigated by measurements of water uptake, acid doping level, electric conductivity, mechanical strength and water drag coefficient. Electrical conductivity is found to be insensitive to humidity but dependent on the acid doping level. At 160 °C a conductivity as high as 0.13 S cm–1 is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 °C, fuel cells based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide.  相似文献   

9.
《Ceramics International》2023,49(5):7935-7945
Solid polymer electrolytes (SPEs) have attracted much attention because of their potential in improving energy density and safety. Vanadium doped ceramic matrix Li6.7La3Zr1.7V0.3O12 (LLZVO) was synthesized by high-temperature annealing, and formed a composite electrolyte with polyethylene oxide (PEO). Compared with pure PEO electrolyte membrane, the composite electrolyte membrane exhibited better ionic conductivity (30 °C: 3.2 × 10?5 S cm?1; 80 °C: 3.6 × 10?3 S cm?1). The combination of LLZVO was beneficial to improve the lithium ion transference number (tLi+) of SPE, which was as high as 0.81. The Li/SPE/LiFePO4 battery shows good cycling ability, with a specific capacity of 142 mAh g?1 after a stable cycle of 150 cycles. Meanwhile, the symmetrical lithium battery with composite electrolyte can work continuously for 1200 h without short circuit at the current density of 0.1 mA cm?2 at 50 °C, and the capacity is 0.176 mAh. Vanadium doped ceramic matrix LLZVO as an active ionic conductor, improved the overall performance of solid electrolyte.  相似文献   

10.
In this study, we prepare a kind of solid polymer electrolyte (SPE) based on N-ethyl-N′-methyl imidazolium tetrafluoroborate (EMIBF4), LiBF4 and poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-HFP)] copolymer. The resultant SPE displays high thermal stability above 300 °C and high room temperature ionic conductivity near to 10−3 S cm−1. Its electrochemical properties are improved with incorporation of a zwitterionic salt 1-(1-methyl-3-imidazolium)propane-3-sulfonate (MIm3S). When the SPE contains 1.0 wt% of the MIm3S, it has a high ionic conductivity of 1.57 × 10−3 S cm−1 at room temperature, the maximum lithium ions transference number of 0.36 and the minimum apparent activation energy for ions transportation of 30.9 kJ mol−1. The charge-discharge performance of a Li4Ti5O12/SPE/LiCoO2 cell indicates the potential application of the as-prepared SPE in lithium ion batteries.  相似文献   

11.
A special “pore/bead” membrane was prepared with a mesoporous inorganic filler (MCM‐41) and a P(VDF‐HFP) binder. The special “pore/bead” structure of the MCM‐41 filler not only enhanced the puncture strength of the membrane but also improved its ionic conductivity. The puncture strength of the dried “pore/bead” membrane (MCM‐41 : P(VDF‐HFP) = 1 : 1.5) was 18 N, and showed a slight decrease (16 N) after the membrane was wetted by liquid electrolyte. Additionally, the composite membrane showed excellent thermal dimensional stability. The composite membrane could be activated by adding 1M LiClO4‐EC/DMC (1 : 1 by volume). The activated membrane displayed a high ionic conductivity about 3.4 × 10?3 S cm?1 at room temperature. Its electrochemical stability window was up to 5.3 V vs. Li/Li+, indicating that it was very suitable for lithium‐ion battery application. The battery assembled using the composite electrolyte also showed reasonably good high‐rate performance. The approach of preparing a “pore/bead” membrane provides a new avenue for improving both the conductivity and the mechanical strength of polymer electrolytes for lithium batteries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
This work aims at developing and characterizing a proton conducting polymer electrolyte based on Poly(N‐vinyl pyrrolidone) (PVP) doped with ammonium bromide (NH4Br). Proton conducting polymer electrolytes based on PVP doped NH4Br in different molar ratios have been prepared by solution casting technique using distilled water as solvent. The XRD pattern confirms the dissociation of salt. The FTIR analysis confirms the complex formation between the polymer and the salt. The conductivity analysis shows that the polymer electrolyte with 25 mol % NH4Br has the highest conductivity equal to 1.06 × 10?3 S cm?1 at room temperature. Also it has been observed that the activation energy evaluated from the Arrhenius plot is low (0.50 eV) for 25 mol % NH4Br doped polymer electrolyte. The influence of salt concentration on dc conductivity and activation energy of the polymer electrolyte has been discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H3PO4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm−1 at a relative humidity 8.4% and temperature of 180 °C with a 300% H3PO4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm−2 at cell voltages >0.4 V and current densities of 3.0 A cm−2. The PTFE/PBI/H3PO4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 °C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.  相似文献   

14.
Solid polymer electrolyte (SPE)-based lithium batteries have easy processing and safety for energy vehicles and storage. However, the preparation process of SPEs mostly used a lot of organic solvents, which will threaten human living space and body health. Herein, a novel green solid polymer electrolyte (ionic liquid type waterborne polyurethane, IWPUS) without no organic solvents was prepared from hybrids of ionic liquid-based waterborne polyurethane (IWPU) and LiClO4. The structure and properties of IWPUS were investigated by IR, SEM, XRD, TGA, ion conductivity test. The results showed that Li+ of LiClO4 could coordinate with  CO and  C O C in the polyurethane matrix. LiClO4 had been well dispersed in IWPU. The conductivity of IWPUS increased with the increase of LiClO4 content. The higher conductivity of IWPUS with 20% LiClO4 at 80°C was 1.8 × 10−4 s•cm−1. IWPUS based on ionic liquid-based waterborne polyurethane would be promised to become an environmentally friendly candidate for all solid-state lithium ion batteries.  相似文献   

15.
We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM9 whose POEM content = 51 wt% shows 2 × 10−5 S/cm at 30 °C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte.  相似文献   

16.
Polyvinyl formal based polymer electrolyte membranes are prepared via the optimized phase inversion method with poly(ethylene oxide) (PEO) blending. The physical properties of blend membranes and the electrochemical properties of corresponding gel polymer electrolytes (GPEs) are characterized by field emission scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge test. The comparative study shows that the appearance of PEO obviously enhances the tensile strength of membranes and the ionic conductivity of corresponding GPEs. When the weight ratio of PEO is 30%, the tensile strength of membrane achieves 12.81 MPa, and its GPE shows high ionic conductivity of 2.20 × 10−3 S cm−1, wide electrochemical stable window of 1.9–5.7 V (vs. Li/Li+), and good compatibility with LiFePO4 electrode. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41839.  相似文献   

17.
Polyethylene oxide (PEO) based-solid polymer electrolytes were prepared with low weight polymers bearing carboxylic acid groups added onto the polymer backbone, and the variation of the conductivity and performance of the resulting Li ion battery system was examined. The composite solid polymer electrolytes (CSPEs) were composed of PEO, LiClO4, PAA (polyacrylic acid), PMAA (polymethacrylic acid), and Al2O3. The addition of additives to the PEO matrix enhanced the ionic conductivities of the electrolyte. The composite electrolyte composed of PEO:LiClO4:PAA/PMAA/Li0.3 exhibited a low polarization resistance of 881.5 ohms in its impedance spectra, while the PEO:LiClO4 film showed a high value of 4,592 ohms. The highest ionic conductivity of 9.87 × 10−4 S cm−1 was attained for the electrolyte composed of PEO:LiClO4:PAA/PMAA/Li0.3 at 20 °C. The cyclic voltammogram of Li+ recorded for the cell consisting of the PEO:LiClO4:PAA/PMAA/Li0.3:Al2O3 composite electrolyte exhibited the same diffusion process as that obtained with an ultra-microelectrode. Based on this electrolyte, the applicability of the solid polymer electrolytes to lithium batteries was examined for an Li/SPE/LiNi0.5Co0.5O2 cell.  相似文献   

18.
S.S Zhang  M.H Ervin  K Xu  T.R Jow 《Electrochimica acta》2004,49(20):3339-3345
We studied microporous poly(acrylonitrile-methyl methacrylate), AMMA, membrane as the separator of Li/LiMn2O4 cell. The porous AMMA membrane was prepared by the phase inversion method with N,N-dimethylformamide (DMF) as the solvent and water as the non-solvent. We observed that morphology of the resulting membrane was strongly affected by the concentration of polymer solution: low concentration produced finger-like pores with dense skin on two surfaces of the membrane, while high concentration yielded open voids with dense layer on the other surface of the membrane. Regardless of their morphology, both membranes could be rapidly wetted by the liquid electrolyte (1.0 m LiBF4 dissolved in 1:3 wt.% mixture of ethylene carbonate (EC) and γ-butyrolactone (GBL)), and could be swollen at elevated temperatures, which resulted in the formation of a microporous gel electrolyte (MGE). It was shown that the resulting MGE not only had high ionic conductivity and but also had good compatibility with metal lithium even at 60 °C. Cyclic voltammetric test showed that the MGE had an electrochemical window of 4.9 V versus Li+/Li. At room temperature, the Li/MGE/LiMn2O4 cell showed excellent cycliability with a specific capacity of 121-125 mA h g−1 LiMn2O4. It was shown that even at 60 °C good mechanical strength of the MGE remained. Therefore, the MGE is suitable for the application of battery separator at elevated temperatures.  相似文献   

19.
In this study, the composite polymer was prepared by blending poly(ethylene oxide) (PEO) and POPM (the copolymer of methyl methacrylate [MMA] and organically modified palygorskite), and then the composite polymer based membrane was obtained by phase-inversion method. The scanning electron microscopy results showed that the composite polymer membrane has a three-dimensional network structure. X-ray diffraction results indicated that the crystalline region of PEO is disappeared when introduction of a certain amount of the PEO. Meanwhile, the elongation of composite polymer membrane increased when increasing PEO concentration, but the value of tensile strength of PEO-POPM membrane decreased. When the mass fraction of PEO was 24%, the porosity and maximum value of ionic conductivity of the composite polymer membrane were 54% and 2.41 mS/cm, respectively. The electrochemical stability window of Li/gel composite polymer electrolyte/stainless steel batteries was close to 5.3 V (vs. Li+/Li), and the battery of Li/gel composite polymer electrolyte/LiFePO4 showed good cycling performance and the discharge capacity of the battery were between 169.8 and 155 mAh/g. Meanwhile, the Coulombic efficiency of the battery maintained over 95% during the 80 cycles.  相似文献   

20.
Flexible, transparent, and crosslinked polymer films were synthesized by polymerization of PEG‐modified urethane acrylate using a simple method. A series of novel solid polymer electrolytes and gel electrolytes were prepared based on this type of polymer film. To understand the interactions among salt, solvent, and polymer, the swelling behaviors of the crosslinked polymer in pure propylene carbonate (PC) and liquid electrolyte solutions (LiClO4/PC) were investigated. The results showed that the swelling rate in the electrolyte solution containing moderate LiClO4 was greater than that in pure PC. Thermogravimetric analysis (TGA) also supported the interaction between the solvent and polymer. The morphology and crystallinity of the crosslinked polymer and polymer electrolytes were studied using atomic force microscopy (AFM) and wide‐angle X‐ray diffraction (WAXD) spectroscopy. The effects of the content of the electrolyte solution on the ionic conductivity of gel electrolytes were explored. The dependence of the conductivity on the amount of the electrolyte solution was nonlinear. With a different content of the plasticizer, the ionic conduction pathway of the polymer electrolytes would be changed. The best ionic conductivity of the gel electrolytes, which should have good mechanical properties, was 4 × 10r?3 S cm?1 at 25°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 340–348, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号