首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of poly(2,5‐selenophen‐oxo‐1,4‐phenylen‐selenide‐1,4‐phenylene‐oxo) (I) and poly(2,5‐selenophen‐oxo‐1,4‐phenylen‐diselenide‐1,4‐phenylen‐oxo) (II) by reaction of 2,5‐bis(1,4‐bromo‐phenylen‐oxo‐)‐selenophene with sodium selenide or diselenide, respectively, using dimethylformamide as solvent, is described. Both monomers and polymers were characterized by elemental analysis, melting point, and FTIR spectroscopy. Polymers I and II were doped with iodine and SbF5 and characterized by SEM and XPS. Also, the conductivity and the Tg values were determined. For both polymers the best doping agent was iodine, although polymer II always presented higher conductivity, reaching values of about 6 · 10?9 S · cm?1. The Tg values suggest a likely crosslinking of the chains in polymer II when doped with SbF5. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2019–2026, 2001  相似文献   

2.
The ammonium salt of 6‐amino‐2‐hydroxy‐3,5‐dinitropyrazine has been synthesised from 2,6‐dimethoxy‐3,5‐dinitropyrazine and its properties (DSC, crystal structure, impact sensitiveness and thermochemical properties) are compared with the analogous benzene derivative, ammonium 3,5‐diaminopicrate.  相似文献   

3.
The heterofunctional condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane with dihydroxydiphenylsilane at various ratios of initial compounds in the presence of amines was carried out, and α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with various degrees of condensation were obtained. Corresponding block copolymers were obtained by heterofunctional polycondensation of synthesized α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with α,ω‐dichlorodimethylsiloxanes in the presence of amines. Thermogravimetry, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray analysis were carried out on the synthesized block coplymers. Differential scanning calorimetry and wide‐angle X‐ray studies of these copolymers showed that their properties were determined by the ratio of the lengths of the flexible linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane fragments in the main macromolecular chain. Two‐phase systems were obtained with specific flexible and rigid fragment length values in synthesized block copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3462–3467, 2006  相似文献   

4.
A new primary explosive, the silver salt of 4,6‐diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (AgDANT), was synthesized and characterized. AgDANT was prepared with a 97 % yield and characterized by IR spectroscopy, single‐crystal X‐ray diffraction, and DTA. The crystal density of AgDANT is 2.530 g cm−3 and the molecule consists of a centro‐symmetric dimer with a high degree of planarity. The intramolecular Ag Ag distance is relatively low (331 pm) and can be considered as a strong argentophilic interaction. AgDANT is non‐hygroscopic and its solubility in water (1.27 mg in 100 mL at 23 °C) is on a similar level of solubility to that of silver azide. The sensitivity of AgDANT to impact is slightly higher than that for MF, sensitivity to friction is the same as for LA, and sensitivity to electric discharge is between that for LS and MF. Initiation efficiency of AgDANT was tested in electric detonators and compared to dextrinated lead azide (initiation efficiency of AgDANT is 40 mg for PETN secondary charge). The thermal resistance of detonators with AgDANT is satisfactory; all detonators were fully functional after exposure at 65 °C (30 d) and 85 °C (2 d).  相似文献   

5.
The nitration kinetics of 1,2,4‐triazol‐5‐one in 70–100% nitric acid were investigated. Formation of N‐nitro‐1,2,4‐triazol‐5‐one under these conditions was observed, and its influence on the total process was studied. The activation energies of formation and decomposition of N‐nitro‐1,2,4‐triazol‐5‐one and of the nitration of 1,2,4‐triazol‐5‐one were determined.  相似文献   

6.
7.
In order to evaluate 2,4,6‐trinitro‐1,3,5‐triazine (TNTAz), 3,6‐dinitro‐1,2,4,5‐tetrazine (DNTAz), and 2,5,8‐trinitro‐tri‐s‐triazine (TNTsTAz), the geometries of these compounds have been fully optimized employing the B3LYP density functional method and the AUG‐cc‐pVDZ basis set. The accurate gas phase enthalpies of formation have been obtained by using the atomization procedure and designing isodesmic reactions in which the parent rings are not destroyed. Based on B3LYP/AUG‐cc‐pVDZ calculated geometries and natural charges, the crystal structures have been predicted using the Karfunkel–Gdanitz method. Computed results show that there exists extended conjugation over the parent rings of these compounds. More energy content is reserved in DNTAz than in both TNTAz and TNTsTAz. The title compounds are much more sensitive than 1,3,5‐trinitrobenzene. The calculated detonation velocity of DNTAz reaches 9.73–9.88 km s−1, being larger than those of CL‐20 and TNTAz. TNTsTAz has no advantage over the widely used energetic compounds such as RDX and HMX.  相似文献   

8.
The reaction of aldehydes and ketones with an organoindium reagent generated in situ from indium and 1,6‐dibromo‐2,4‐hexadiyne in the presence of lithium iodide in tetrahydrofuran (THF) selectively produced 1,6‐diols linked to an allenyne unit with complete regioselectivity and chemoselectivity through 1,2‐hexadien‐4‐yn‐3,6‐ylation, indicating that the organoindium acted as the 3,6‐dianion reagent of 1,2‐hexadien‐4‐yne.  相似文献   

9.
A novel phosphorous‐containing biphenol, 2‐(5,5‐dimethyl‐4‐phenyl‐2‐oxy‐1,3,2‐dioxaphosphorin‐6‐yl)‐ 1,4‐benzenediol (DPODB), was prepared by the addition reaction between 5,5‐dimethyl‐4‐phenyl‐2‐oxy‐1,3,2‐dioxaphosphorinane phosphonate (DPODP) and p‐benzoquinone (BQ). The compound (DPODB) was used as a reactive flame retardant in o‐cresol formaldehyde novolac epoxy resin (CNE) for electronic application. The structure of DPODB was confirmed by FTIR and NMR spectra. Thermal properties of cured epoxy resin were studied using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The flame retardancy of cured epoxy resins was tested by UL‐94 vertical test and achieved UL‐94 vertical tests of V‐0 grade (nonflammable). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3842–3847, 2006  相似文献   

10.
The existence of two new types of chloroderivates of cyclic acetone peroxides – 3‐(chloromethyl)‐3,6,6,9,9‐pentamethyl‐1,2,4,5,7,8‐hexoxonane and 3,6‐bis(chloromethyl)‐3,6,9,9‐tetramethyl‐1,2,4,5,7,8‐hexoxonane was proved by HPLC/MS/MS and NMR in the reaction products when acetone and hydrogen peroxide are mixed in the presence of excess hydrochloric acid (molar ratio hydrochloric acid to acetone nc/na=2.5). The details of analysis, and the conditions under which these asymmetric chloroderivates of cyclic peroxides form, are described.  相似文献   

11.
A biotransformation process using Mycobacterium sp was studied for androsta‐1, 4‐diene‐3,17‐dione (ADD) and androsta‐4‐ene‐3,17‐dione (AD) production from cholesterol. Cholesterol has a poor solubility in water (~1.8 mg dm?3 at 25 °C), which makes it difficult to use as the substrate for biotransformation. Lecithin is a mixture of phospholipids of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), which behave like surfactants and can form planar bi‐layer structures in an aqueous medium. Therefore, a small amount of lecithin (<1 g dm?3) can be used to form stable colloids with cholesterol at a relatively high concentration (20 g dm?3) in water. In this work, an energy density of 1000 J cm?3 from sonication was provided to overcome the self‐association of cholesterol and to generate a stable lecithin–cholesterol suspension that could be used for enhanced biotransformation. The lecithin–cholesterol suspension was stable and could withstand typical autoclaving conditions (121 °C, 15 psig, 20 min). In contrast to conventional surfactants, such as Tween 80, that are commonly used to help solubilize cholesterol, lecithin did not change the surface tension of the aqueous solution nor cause any significant foaming problem. Lecithin was also biocompatible and showed no adverse effect on cell growth. Compared with the medium with Tween 80 as the cholesterol‐solubilizing agent, lecithin greatly improved the biotransformation process in regard to its final product yield (~59% w/w), productivity (0.127–0.346 g dm?3 day?1), ADD/AD ratio (6.7–8), as well as the long‐term process stability. Cells can be reused in repeated batch fermentations for up to seven consecutive batches, but then lose their bioactivity due to aging problems, possibly caused by product inhibition and nutrient depletion. © 2002 Society of Chemical Industry  相似文献   

12.
2‐Acetyl‐4,6,8,10,12‐pentanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (PNAIW) is formed in the last step of nitration of acetyl isowurtzitane derivatives. The amount of the PNAIW formed depends on the conditions of the nitration reaction (temperature, time, and nitrating mixture used) and on the type of the starting acetyl intermediate. The highest PNAIW yields (30 %) were obtained by nitrating 2,6,8,12‐tetraacetylhexaazaisowurtzitane (TAIW) at 60 °C for half an hour using HNO3/H2SO4 nitrating mixture. HPLC, NMR, FTIR, and DSC measurements were used in the study and their results are reported.  相似文献   

13.
14.
4,6‐Diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (DANT) was prepared with a 35 % yield from cyanuric chloride in a three step process. DANT was characterized by IR and NMR spectroscopy (1H, 13C, 15N), single‐crystal X‐ray diffraction, and DTA. The crystal density of DANT is 1.849 g cm−3. The cyclization of one azido group and one nitrogen atom of the triazine group giving tetrazole was observed for DANT in a dimethyl sulfoxide solution using NMR spectroscopy. An equilibrium exists between the original DANT molecule and its cyclic form at a ratio of 7 : 3. The sensitivity of DANT to impact is between that for PETN and RDX, sensitivity to friction is between that for lead azide and PETN, and sensitivity to electric discharge is about the same as for PETN. DANT′s heat of combustion is 2060 kJ mol−1.  相似文献   

15.
In the condensation reaction of nitromethane with glyoxal carried out in an aqueous solution of sodium hydroxide, 3,6‐dinitro‐cyclohexane‐1,2,4,5‐tetraol was obtained (the expected product, described in the literature) and, unexpectedly, also tricyclic nitro‐triol (6b‐nitrohexahydro‐2H‐1,3,5‐trioxacyclopenta[cd]‐pentalene‐2,4,6‐triol), which has been unknown until now, was obtained as the main product. The structure of the compound was confirmed with 1H NMR and 13C NMR spectroscopy, LR, and HR‐MS techniques and with single‐crystal X‐ray diffractometry. The tricyclic triol (formally a hemiacetal) was transformed into 6b‐nitrohexahydro‐2H‐1,3,5‐trioxacyclopenta[cd]‐pentalene‐2,4,6‐triyl trinitrate by reaction with 98 % HNO3. Some explosive properties of this compound were determined including: friction and impact sensitivity, activation energy, detonation velocity, heat of combustion in an oxygen atmosphere and enthalpy of formation. The nitrate ester is a powerful explosive with performance close to that of pentaerythritol tetranitrate (PETN).  相似文献   

16.
The hydrolytic condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane under neutral conditions produced α'ω‐dihydroxy‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane (polymerization degree ≈ 4). The homofunctional condensation of α'ω‐dihydroxy‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane in a toluene solution and in the presence of activated carbon was performed, and dihydroxy‐containing oligomers with various degrees of condensation were obtained. Through the heterofunctional condensation of dihydroxy‐containing oligomers with α'ω‐dichlorodimethylsiloxanes in the presence of amines, corresponding block copolymers were obtained. Gel permeation chromatography, differential scanning calorimetry, thermomechanical analysis, thermogravimetry, and wide‐angle roentgenography investigations were carried out. Differential scanning calorimetry and roentgenography studies of the block copolymers showed that their properties were determined by the ratio of the lengths of the flexible and linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane) fragments in the macromolecular chain. At definite values of the lengths of the flexible and rigid fragments, a microheterogeneous structure was observed in the synthesized block copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1409–1417, 2002; DOI 10.1002/app.10335  相似文献   

17.
Abstract

Para‐substituted 4‐aroyl derivatives of 1‐phenyl‐3‐methyl‐5‐pyrazolones (HX), namely, 1‐phenyl‐3‐methyl‐4‐(4‐fluorobenzoyl)‐5‐pyrazolone (HPMFBP) and 1‐phenyl‐3‐methyl‐4‐(4‐toluoyl)‐5‐pyrazolone (HPMTP) were synthesized and examined with regard to the extraction behavior of multivalent metal ions such as magnesium(II), aluminum(III), titanium(IV), vanadium(V), chromium(III), manganese(II), iron(II), and iron(III) that are present in titania waste chloride liquors. For comparison, studies have also been carried out with 1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone (HPMBP). The results demonstrate that vanadium(V) and iron(III) are extracted into chloroform with 4‐aroyl‐5‐pyrazolones as VO2X · HX and FeX3, respectively. On the other hand, magnesium(II), aluminum(III), titanium(IV), chromium(III), manganese(II), and iron(II) were not found to be extracted into the organic phase. The equilibrium constants of vanadium(V) and iron(III) with various 4‐aroyl‐5‐pyrazolones follow the order HPMFBP>HPMBP>HPMTP, which is in accordance with their pKa values. The selectivity between vanadium(V) and iron(III) increases with increasing hydrochloric acid concentration. Further, it is clear from the results that iron(III) is not getting extracted above 1.0 mol dm?3 hydrochloric acid solution. The electronic and IR spectra of the extracted complexes of vanadium(V) and iron(III) were used to further clarify the nature of the extracted complexes. The potential of these reagents for the selective extraction and separation of vanadium(V) from titania waste chloride liquors has also been discussed.  相似文献   

18.
1‐Amino‐1‐hydrazo‐2,2‐dinitroethene ( 2 ) has been observed to spontaneously decompose with considerable violence during storage. Its preparation and handling should be regarded as potentially hazardous.  相似文献   

19.
Octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is currently one of the most widely used explosives. 1,3,5,7‐Tetraacetyl‐1,3,5,7‐tetraazacyclooctane (TAT) is an attractive precursor for the synthesis of HMX; the nitration of this key precursor results in both high yield and purity under mild condition. TAT can be prepared either by acetylation of 2,6‐diacetyl‐pentamethylenetetramine (DAPT) or by the condensation of ACN and 1,3,5‐trioxane. However, TAT and DAPT are polar compounds, and are difficult to analyze using reverse phase liquid chromatography. Herein, a chromatography method for the direct separation of these polar compounds was developed using hydrophilic interaction chromatography (HILIC) using a Venusil HILIC column, with ACN/water (95/5, v/v) as the mobile phase. The chromatographic analysis and identification of these polar compounds provide valuable information for the optimization of the synthetic process of TAT.  相似文献   

20.
BACKGROUND: Microbial transformation of steroids has attracted widespread attention, especially the transformation of those steroids synthesized with difficulty by chemical methods. In this study, microbial transformation of androst‐4‐ene‐3, 17‐dione (AD) by Bordetella sp. B4 was investigated, and the effect of temperature on transformation was studied. RESULTS: Three metabolites were purified by preparative TLC and HPLC, and identified as androsta‐1,4‐diene‐3,17‐dione (ADD), 9α‐hydroxyandrost‐4‐ene‐3, 17‐dione (9α‐OH‐AD), and 3‐hydroxy‐9, 10‐secoandrost‐1, 3, 5‐triene‐9, 17‐dione (3‐OH‐SATD) by nuclear magnetic resonance imaging (NMR), Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy (MS). It was first reported that the genus of Bordetella has the capability of AD degradation. Microbial transformation of AD was performed at 30 °C, 37 °C, 40 °C and 45 °C. The 9α‐OH‐AD yield reached a maximum within 16 h when the strain was cultivated in media with AD as sole carbon at 37 °C. Surprisingly, ADD was produced by the strain cultivated at 40 °C but not at 37 °C, which was different from previous reports. It was deduced that the alcohol dehydrogenase that catalyzed the transformation of AD to ADD may be temperature sensitive. CONCLUSION: Androst‐4‐ene‐3,17‐dione was converted into 9α‐hydroxyandrost‐4‐ene‐3, 17‐dione and other metabolites rapidly by Bordetella sp. B4. It is anticipated that the strain Bordetella sp. B4 CGMCC 2229 can be used in the steroids industry. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号