首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethersulfone (PES) hollow fiber membrane was prepared by blending with nonionic surfactant Tetronic 1307 to improve its hydrophilicity. The membranes were posttreated by hypochlorite solution of 10, 100, 500, and 2000 ppm. The effect of hypochlorite treatment on the performance of PES membrane was investigated. Experimental results showed that the water permeability of treated membrane was two to three times higher than that of untreated membrane in case of blend membrane prepared from PES/N‐methyl‐2‐pyrrolidone (NMP)/Tetronic 1307 solution. On the other hand, hypochlorite treatment has no effect on water permeability of the membrane prepared from PES/NMP solution. Elemental analysis and ATR–FTIR measurement results indicated that hypochlorite treatment led to decomposition and leaching out of Tetronic 1307 component from the membrane. The change of membrane surface structure by the hypochlorite treatment was confirmed by atomic force microscopy measurement. The hypochlorite treatment brought about no significant impact on the mechanical property of the membranes. This indicated that the hypochlorite treatment of PES membrane prepared with surfactant was a useful way to improve the water permeability without the decrease of membrane strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Textured silicon (Si) substrate were prepared using various texturing methods both chemical and physical and their water contact angle, surface topography and Raman spectra were studied and investigated. The effect of plasma and chemical treatment on micro/nanostructure and roughness of the surface with and without deposition of Octadecyltrichlorosilane (ODTS, Cl3Si (CH3)17), self-assembled monolayer (SAM) is investigated for achieving higher water contact angle (θc). The importance of synergism of texturing with deposition of ODTS SAM in preparing superhydrophobic silicon surfaces has been discussed. It is shown that superhydrophobic silicon surfaces can be achieved on silicon surfaces by coating with ODTS, irrespective of whether it is textured or not, polished or unpolished, provided a chemical treatment is given to the surface prior to the ODTS coating.  相似文献   

3.
Polyethersulfone (PES) dope solutions were prepared from mixtures of two solvents containing N,N‐dimethylformamide (DMF) as core solvent and acetone as co‐solvent (CS) in a closed heating system. PES asymmetric membranes were cast by a dry/wet phase inversion process. Complete miscibility of PES with the fixed mixture of acetone and DMF under atmospheric pressure could be achieved. The kinetic and thermodynamic properties indicated that interaction of DMF and acetone is strongest when their mole ratio is unity, pointing to the phenomenon of true co‐solvency for PES dissolution. These results were supported by determination of the water uptake, contact angle measurement, and SEM analyses. Membrane performance, pore volume, and total pore volume on the membrane surface were also investigated.  相似文献   

4.
Blend PES/CA hydrophilic membranes were prepared via a phase-inversion process for oil–water separation. PEG-400 was introduced into the polymer solution in order to enhance phase-inversion and produce high permeability membranes. A gas permeation test was conducted to estimate mean pore size and surface porosity of the membranes. The membranes were characterized in terms of morphology, overall porosity, water contact angle, water flux and hydraulic resistance. A cross-flow separation system was used to evaluate oil–water separation performance of the membranes. From FESEM examination, the prepared PES/CA membrane presented thinner outer skin layer, higher surface porosity with larger pore sizes. The outer surface water contact angle of the prepared membrane significantly decreased when CA was added into the polymer solution. The higher water flux of the PES/CA membrane was related to the higher hydrophilicity and larger pore sizes of the membrane. From oil–water separation test, the PES/CA membrane showed stable oil rejection of 88 % and water flux of 27 l/m2 s after 150 min of the operation. In conclusion, by controlling fabrication parameters a developed membrane structure with high hydrophilicity, high surface porosity and low resistance can be achieved to improve oil rejection and water productivity.  相似文献   

5.
Zn–Al layered double hydroxide (LDH)‐entrapped poly(ether sulfone) (PES) ultrafiltration membranes with four different weight percentages, 0.5, 1.0, 2.0, and 3.0%, were prepared by a phase‐inversion method. Characterization by scanning electron microscopy, atomic force microscopy and contact angle (CA), equilibrium water content, porosity, average pore size, mechanical strength, and ζ potential measurement were used to evaluate the morphological structure and physical and chemical properties of membranes. Static protein adsorption, filtration, and rejection experiments were conducted to study the antifouling properties, water permeability, and removal ability of the modified membranes. The results show that significant change occurred in the membrane morphology and that better hydrophilicity, water permeability, and antifouling ability were also achieved for the PES/LDH membranes when a proper amount of LDH was used. For example, the CA value decreased from 66.60 to 50.21°, and the pure water flux increased from 80.21 to 119.10 L m?2 h?1 bar?1 when the LDH loading was increased from 0 to 2.0 wt %. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43988.  相似文献   

6.
In this study, asymmetric flat‐sheet polyethersulfone (PES) nanofiltration (NF) membranes were prepared via immersion precipitation phase inversion with the addition of polyvinylpyrrolidone (PVP). The effects of PVP with the molecular weights (MW) from 17 to 1400 kDa and the concentration from 0 to 3.0 wt % on the morphologies and performances of PES membranes were systematically studied. The prepared membranes were characterized by SEM, AFM, ATR‐FTIR, contact angle, membrane porosity, the water flux, and the rejection measurement. The results indicated that the porosity and the hydrophilicity of PES NF membrane increased with increasing PVP concentration, and the hydrophilicity of PES NF membrane also improved with increasing PVP MW. The enhancements of the porosity and hydrophilicity resulted in the higher water flux of PES NF membrane. The rejection of Bordeaux S (MW 604.48 Da) for the prepared PES membrane was increased to above 90% with the low PVP concentration, but it turned to decrease remarkably when the PVP concentration reached to a critical value which related to PVP MW. It was concluded that the addition of a small amount of PVP could significantly increase the permeability of PES NF membrane and maintain its rejection of Bordeaux S above 90%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43769.  相似文献   

7.
In this work, an in situ reduction method was used to prepare nanosilver‐modified polyethersulfone (PES‐Ag) ultrafiltration membranes by mixing up the reducing agent ethylene glycol and the protective agent polyvinylpyrrolidone to reduce AgNO3 in the casting solution. The effects of coagulation bath temperature (CBT) on the separation performances, antifouling property, tensile strength, and stability of the nanosilver particles were researched. The results indicated that when the PES‐Ag membranes were prepared in 40°C coagulation bath, the loss rate of nanosilver particles during preparation was minimum, only 18.5%. With the CBT increasing from 20 to 60°C, the water flux of the PES and PES‐Ag membranes increased, whereas the rejection rate decreased. The largest flux reached 471 L·m?2·h?1 for PES‐Ag membranes prepared at 60°C and the rejection was over 90%. The results of contact angle and flux recovery ratio showed that PES‐Ag membranes had better hydrophilicity and antifouling property. Furthermore, the PES‐Ag membranes could inhibit Escherichia coli from growing. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
Hydroxyl‐terminated polybutadiene (HTPB) was blended into a poly(ether sulfone) (PES) casting solution used to prepare ultra‐filtration (UF) membranes via the phase inversion technique. The membranes were then characterized by contact angle (CA) measurements and UF experiments. The CA was increased with the addition of HTPB in the PES membrane and also by lowering the gelation bath temperature. It was observed that the CA was lower for membranes prepared with N‐methyl‐2‐pyrrolidinone (NMP) as the solvent than those using N,N‐dimethylacetamide (DMAc) as solvent. The flux values were higher for membranes made using a 4°C gelation bath when compared with the ambient temperature ((25 ± 1)°C) irrespective of the cast solvents, NMP or DMAc. The flux values were much higher and the solute separations were lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast with DMAc as a solvent. On the other hand, both flux and separation values were much lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast using NMP. Atomic force microscopy and scanning electron microscopy were used for morphological characterization and the correlation of topography/photography with the performance data was also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2292–2303, 2006  相似文献   

9.
The goethite nanoparticle was used as a multifunctional additive to fabricate antifouling polyethersulfone (PES) nanofiltration membranes. The goethite/PES membranes were synthesized via the phase inversion method. The scanning electron microscopy (SEM) photographs showed an increase in pore size and porosity of the prepared membranes with blending of the goethite. The static water contact angle measurements confirmed a hydrophilic modification of the prepared membranes. With increase in the goethite content from 0 to 0.1 wt %, the pure water flux increased up to 12.7 kg/m2 h. However, the water permeability decreased using high amount of this nanoparticle. Evaluation of the nanofiltration performance was performed using the retention of Direct Red 16. It was observed that the goethite/PES membranes have higher dye removal capacity (99% rejection) than those obtained from the unfilled PES (89%) and the commercial CSM NE 4040 NF membrane (92%). In addition, the goethite/PES blend membranes showed good selectivity and antifouling properties during long‐term nanofiltration experiments with a protein solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43592.  相似文献   

10.
To construct a phase diagram of the polysulfone (PSF)/polyethersulfone (PES)/N‐methyl‐2‐pyrrolidone (NMP)/water quaternary system, cloud point measurements were carried out by a titration method. The miscible region in the PSF/PES/NMP/water quaternary system was narrow compared to the PSF/NMP/water and PES/NMP/water ternary systems. The binary interaction parameters between PSF and PES were estimated by water sorption experiments. The calculated phase diagram based on the Flory–Huggins theory fit the experimental cloud points well. In addition to the usual polymer–liquid phase separation, polymer–polymer phase separation, which resulted in a PSF‐rich phase and a PES‐rich phase, was observed with the addition of a small amount of nonsolvent. The boundary separating these two modes of phase separation could be well described and predicted from the calculated phase diagrams with the estimated binary interaction parameters of the components. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2113–2123, 1999  相似文献   

11.
The adsorption of proteins onto polymeric surfaces is encountered in many natural and industrial processes and is a prerequisite to their efficient identification, separation, and purification by methods such as chromatography, and filtration. Nevertheless, the exact nature of the adsorption mechanisms and interfacial interactions is not easy to identify for a given protein–polymer system. Here, we aim to document the adsorption mechanism of a protein–polymer system by investigating the adsorption as well as desorption phenomenon of a protein [bovine serum albumin (BSA)] from the polymeric surface [polyethersulfone (PES)]. The analyses performed to document the adsorption mechanism of the BSA–PES system include scanning electron microscope (SEM), attenuated total reflection-Fourier transform infrared (FTIR), contact angle, zeta potential, surface charge density measurement, and Derjaguin–Landau–Verwey–Overbeek (DLVO). Here, SEM and FTIR identified the physical and chemical properties of pure PES and PES–BSA membranes. The low water contact angle of the PES–BSA membrane confirms its applicability for tissue engineering applications. Further, the zeta potential, surface charge density measurement, and DLVO analyses were performed to document the adsorption mechanism. The adsorption of BSA particles on the PES surface was carried out for pH values that ranged from 4 to 10 for contact times that ranged from 1 to 3 days. A monotonic increase in the zeta potential of the PES–BSA system indicated considerable adsorption of BSA particles on the PES surface. Further, BSA adsorption was very strong for pH values greater than 4.7 which confirms to strong electrostatic interactions between BSA and PES. The strong electrostatic interaction is also collaborated by low desorption rate, which was only ∼22% for pH 10 after 3 days of contact. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47931.  相似文献   

12.
The effect of sodium bromide (NaBr) on performance and characteristics of ultrafiltration (UF) membranes was studied. Asymmetric UF membranes were prepared by phase inversion technique from a multicomponent dope polymer solution consisting of the polymer; polyethersulfone (PES), solvent; N, N‐dimethylformamide (DMF) and NaBr as micromolecular additive. The dissolution of PES‐DMF‐NaBr was carried out using microwave irradiation technique to induce rapid dissolution through minimal heating time. Various concentrations of NaBr were mixed with PES in the range of 1–5 wt % and its influence on membrane characteristics such as surface hydrophilicity was measured by contact angle and the performance in terms of water flux and rejection rates were evaluated using micromolecular test substances. The morphology and streaming potential of PES UF membranes were analyzed using scanning electron microscopy (SEM) and ζ‐potential measurement, respectively. Overall, the results suggest that the membrane consisting of 1 wt % NaBr exhibits the best performance in terms of rejection and flux rates with molecular weight cutoff (MWCO) of 45 kDa and mean pore size of 6 nm. The membrane with the 1 wt % addition of NaBr demonstrates most negative charge which indicates less fouling characteristics and displays approximately three times higher permeation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this study, self‐synthesized copper(I) oxide (Cu2O) nanoparticles were incorporated in poly(ether sulfone) (PES) mixed‐matrix membranes (MMMs) through the phase‐inversion method. A cubic arrangement and crystallite size of 28 nm was identified by transmission electron microscopy and X‐ray diffraction (XRD) for the as‐synthesized Cu2O particles. The pristine PES membrane had a higher contact angle value of 88.50°, which was significantly reduced up to 50.10° for 1.5 wt % PES/Cu2O MMMs. Moreover, XRD analysis of the Cu2O‐incorporated PES membrane exhibited a new diffraction pattern at 36.46°. This ensured that the Cu2O nanoparticles were distributed well in the PES matrix. Interestingly, the water permeability progressively improved up to 66.72 × 10?9 m s?1 kPa?1 for 1.5 wt % PES/Cu2O MMMs. Furthermore, the membrane performances were also evaluated with different feed solutions: (1) bovine serum albumin, (2) humic acid, and (3) oil–water. The enhanced rejection and lower flux reduction percentage were observed for hybrid membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43873.  相似文献   

14.
Four different p‐PDA–based polyimide thin films were prepared from their respective poly(amic acid)s through thermal imidization at 400°C: poly(p‐phenylene pyromellitimide) (PMDA‐PDA); poly(p‐phenylene biphenyltetra carboximide) (BPDA‐PDA); poly(p‐phenylene 3,3′,4,4′‐oxydiphthalimide) (ODPA‐PDA); and poly(p‐phenylene 4,4′‐hexafluoroisopropylidene diphthalimide) (6FDA‐PDA). Water‐sorption behaviors of polyimide films were gravimetrically investigated at 25°C and 22–100% relative humidity by using the modified electromicrobalance (Thin Film Diffusion Analyzer). The diffusion coefficients of water for the polyimides varies in the range of 1.6 to 10.5 × 10−10 cm2/s, and are in the increasing order: BPDA‐PDA < PMDA‐PDA ∼ ODPA‐PDA < 6FDA‐PDA. The water uptakes of polyimides vary from 1.46 to 5.80 wt %, and are in the increasing order: BPDA‐PDA < ODPA‐PDA < 6FDA‐PDA < PMDA‐PDA. The water‐sorption behaviors for the p‐PDA–based polyimides are closely related to the morphological structure; specifically, the diffusion coefficients in p‐PDA–based polyimide thin films are closely related to the in‐plane orientation and mean intermolecular distance, whereas the water uptakes are affected by the packing order. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1315–1323, 2000  相似文献   

15.
The blend polyethersulfone (PES)/cellulose acetate (CA) flat‐sheet microporous membranes were prepared by reverse thermally induced phase separation (RTIPS) process. The effects of CA content and coagulation bath temperature on membrane structures and properties were investigated in terms of membrane morphology, water contact angle, permeation performance, and mechanical properties. The cloud point results indicated that the cloud point decreased with the increasing content of CA. When the coagulation bath temperature was lower than the cloud point, the membrane formation process underwent nonsolvent induced phase separation (NIPS) process and dense skin layer and finger‐like structure were formed in membranes. These membranes had lower pure water flux and poor mechanical properties. But when the coagulation bath temperature was higher than the cloud point, the membrane formation process underwent RTIPS process. The porous top surface as well as porous cross‐section of the membranes were formed. Therefore, high pure water flux and good mechanical properties were obtained. The contact angles results indicated that the hydrophilicity of the prepared membranes improved obviously with the addition of CA. When the content of CA was 0.5 wt% and the membrane formation temperature was 323K, the PES/CA microporous membrane which was prepared via the RTIPS process displayed a optimal permeability of the pure water flux of 816 L m?2 h?1 and the BSA rejection rate of 49.5%, which showed an increase of 48.9% and 23.6% than that of pure PES membrane, respectively. Moreover, the mechanical strengths of the membranes obtained by RTIPS process were better than those membranes prepared by NIPS process. POLYM. ENG. SCI., 58:180–191, 2018. © 2017 Society of Plastics Engineers  相似文献   

16.
Membrane fouling remains a major barrier to membrane separation, particularly obvious in polymer membranes. Dopamine (DA) is of great value as a precursor for conjugation hydrophilic molecules. In this study, PP hollow fibrous membranes were first modified by DA to form a layer of polydopamine (PDA) coating. Then taurine and glycidol were introduced respectively with assisted by PDA reactive layer, the prepared membranes corresponding to PP‐T and PP‐G membranes, respectively. PP and the modified PP membranes were confirmed by a thorough membrane characterization of ATR‐FTIR, XPS, and FESEM measurements. The hydrophilic properties and permeability were measured by water contact angle (WCA) and permeation flux test. BSA was used to as model protein to evaluate the antifouling properties of the membranes. The results showed that taurine and glycidol were successfully introduced onto the membrane surface. The WCA of PP‐T and PP‐G membranes can be reduced to 32° and 26°, and the flux recovery ratio increased around 90.6% and 89.8%, respectively. Based on the experimental results, taurine and glycidol effectively improved the hydrophilic and anti‐fouling performance of PP membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44430.  相似文献   

17.
Three‐dimensional polymer nanofibrous mats with tunable wettability have been fabricated using a single step non‐conductive template assisted electrospinning process. Cellulose acetate nanofibers are electrospun over a nylon mesh, which acts as the template. The as‐deposited fiber mat is removed from this template to produce a free standing three‐dimensional micropatterned nanofibrous mat. By simply varying the template mesh dimensions, the fraction of the air‐liquid interface can be changed which allows control of the wetting mechanics. It is shown that the water contact angle can be varied from about 30° for a planar network to about 140° for a patterned mat implying a complete transition from hydrophilic to hydrophobic behavior. Furthermore, upon stretching the fiber mat loses its pattern irreversibly and reducing the contact angle from 140° to 110° with increasing stretching. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44709.  相似文献   

18.
Electropolymerization nanofilm was prepared by cyclic voltammogram with 6N,N‐diallylamino‐1,3,5‐triazine‐2,4‐dithiol monosodium (DAN) on the AA5052 surface in 0.15M NaNO2 at 10°C, then octyl‐triethoxysilane (OTES) film was fabricated on the poly(6N,N‐diallylamino‐1,3,5‐triazine‐2,4‐dithiol) nanofilm (PDA) covered AA5052 surface by self‐assembling method to obtain the composite polymeric nanofilm (C‐PDA/OTES). The composite polymeric nanofilm was characterized by means of FTIR spectra, scanning electron microscope (SEM), contact angle, and potentiodynamic polarization. The results showed that the C‐PDA/OTES covered surface was more homogenous, compact, hydrophobic compared with PDA covered surface and had excellent protection efficiency. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Hydrophilic modification is a promising method to inhibit fouling formation on ultrafiltration membrane.In this work,different mass concentrations (1%-16%) of hydrophilic polyvinylpyrrolidone were incorpo-rated into polyethersulfone (PES) membranes fabricated by none-solvent induced phase separation.Then,polydopamine (PDA) coating on the surface of prepared membrane was carried out at pH 8.5.The mor-phology and structure,surface hydrophilicity,permeation flux,BSA rejection,antifouling and stability performances of PES and PDA/PES modified membranes were investigated in detail.The results indicated that PDA was successfully attached onto the membranes.Membrane hydrophilicity was evaluated by water contact angle measurement.The contact angles of modified membranes reduced remarkably,sug-gesting that the membrane hydrophilicities were significantly increased.The results of filtration tests,which were done by dead-end filtration of bovine serum albumin solution,showed that the properties of permeability and fouling resistance were obviously improved by PDA modification.When polyvinylpyrrolidone mass content reached 10%,flux recovery ratio of modified membrane was up to 91.23%,and its BSA rejection were over 70%.The results of stability tests showed that the modified mem-branes had good mechanical stability and chemical stability.This facile fabrication procedure and out-standing performances suggested that the modified membranes had a potential in treating fouling.  相似文献   

20.
Water contaminated by oil poses challenges to the management of water resources. Magnetic nanoparticles has been issue of different potential applications including remotion oil from water. Magnetic polystyrene–palygorskite nanocomposites were prepared by a heterogeneous phase polymerization for the removal of organic contaminants from water. The organo‐Fe3O4‐palygorskite nanoparticles were coated with polystyrene, forming water repellent and oil absorbing surfaces to promote the removal of oil from the surfaces of nanocomposites by applying an external magnetic field. X‐ray fluorescence, X‐ray diffraction, scanning electron microscopy, zeta potential and size distribution measurement, surface area determination by BET, density measurement by He pycnometry, carbon grade determination, thermogravimetric analysis, Fourier‐transform infrared spectroscopy, Raman spectroscopy, and evaluation of hydrophobicity by contact angle were used to characterize the nanoparticles. The magnetic nanocomposite obtained showed excellent hydrophobicity, around 78° contact angle. In addition, oil removal capability tests were also performed, according to which the preliminary results indicated removal of approximately 98% of oil in synthetic oily water samples. The oil–water separation using this magnetic nanocomposite provides a promising alternative strategy for water treatment. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46162.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号