首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
全固态锂离子电池具有高能量密度、长循环寿命和高安全性等优点,是当前的研究热点。固态电解质是全固态电池的核心组件,石榴石型固态电解质被认为是体型全固态锂离子电池理想的电解质材料。基于石榴石固态电解质构筑复合正极,解决固态电解质与正极材料、电解质层与复合正极层的固–固界面问题,是提高电池性能的关键。详述了石榴石电解质基复合正极构筑以及与电解质间界面修饰的研究进展,并展望了石榴石型全固态锂离子电池的复合正极构筑及界面修饰的发展方向。  相似文献   

2.
全固态锂电池具有能量密度高、循环寿命长和高安全性等优点,成为当前的研究热点。固态电解质是全固态锂电池的核心,主要包括氧化物、硫化物、聚合物以及复合型固态电解质。当前,发展全固态锂电池的关键是设计和制备具有高离子电导率的固态电解质,解决固态电解质与电极间的固–固界面问题。本文综述了全固态锂电池固态电解质以及固态电解质与电极间固–固界面的稳定兼容问题的最新进展,并展望了未来全固态锂电池的研究重点和发展方向。  相似文献   

3.
固态聚合物电解质具有高安全性、高成膜性和黏弹性等优点,并与电极具有良好的接触性和相容性,是实现高安全性和高能量密度固态Li+电池的重要电解质体系。然而聚合物电解质室温离子电导率较低(10-8~10-6 S·cm-1),不能满足固态聚合物电池在常温运行的需求。因此,在提高离子电导率、机械强度和电化学稳定性等本征属性的基础上,同时探究改善电解质/电极的界面处及电极内部的离子输运是研发固态聚合物Li+电池面临的关键问题。主要从改性聚合物电解质用以提高Li+电池电化学性能的角度出发,综述了凝胶聚合物电解质、全固态聚合物电解质和复合固态电解质中的离子输运机制及其关键参数,总结了近年来聚合物电解质的最新研究进展和未来的发展方向。  相似文献   

4.
商用锂离子电池由于使用危险和易燃的液体电解质,容易发生火灾和泄漏问题,存在安全隐患。全固态锂离子电池由于其安全性和潜在的高能量密度优势,被认为是下一代能量存储设备。固态聚合物电解质作为全固态锂电池的关键部件,具有良好的不可燃性和对锂金属阳极的适应性,近年来受到广泛关注。但其离子导电性低、力学性能差以及循环寿命不足等限制了其实际应用。根据近年来的研究进展,本文总结了优化固态聚合物电解质性能的方法,包括增加离子电导率,提高电压稳定性、抑制枝晶形成、增加离子选择性和降低界面电阻等,并简要分析了聚合物电解质的现状和发展前景,为固体聚合物电解质基电池的广泛应用奠定了基础。  相似文献   

5.
《硅酸盐学报》2021,49(7):1263-1277
相比于液态锂电池,固态锂金属电池由于电解质不易燃、不挥发而具有更高的安全性。此外,固态电解质能够有效抑制锂枝晶的生长,使基于高能量密度的锂金属作为负极材料成为可能。但是,固态锂金属电池存在着界面阻抗大、固体电解质/电极兼容性差、电解质离子电导率低及电化学窗口较窄等问题。因此,开发高性能的柔性固体电解质对推动固态锂金属电池的发展起着重要作用。本工作总结了固态锂金属电池中聚合物与不同类型填料复合最新研究进展及复合固体电解质匹配电极材料时存在的界面阻抗大问题与解决策略。  相似文献   

6.
在新一代储能领域中,相比于传统的有机液态电池,全固态电池具有安全性高、能量密度高和循环寿命长等优势,对其电解质的研究更是关注的重点.有机-无机复合固态电解质结合了无机固态电解质高强度、高稳定性、高离子电导率与聚合物固态电解质的质软、易加工的优势,是目前最有潜力的电解质体系.对锂离子固态电解质的基础进行了简介,并着重对有...  相似文献   

7.
刘丽露  吴凡  李泓  陈立泉 《硅酸盐学报》2019,47(10):1367-1385
锂离子电池固态化在大幅提高安全性的同时可兼具高能量和高功率密度,在电动车、国防等领域具有重大的应用前景。在实现全固态锂电池的3种固态电解质体系中,硫化物固态电解质由于具有最高的离子电导率、较好的机械延展性以及与电极良好的界面接触等优点,成为最具潜力的技术方向。然而其空气稳定性和电化学稳定性较差,尤其是后者直接限制了其在高能量密度全固态锂电池中的应用。通过从实验及理论计算两方面总结归纳了迄今为止关于硫化物固态电解质电化学稳定性的研究进展,并对现有提升硫化物固态电解质电化学稳定性的实验思路和理论结果进行了总结。  相似文献   

8.
《湖北化工》2012,(5):53-53
近日,丰田中央研发实验室开发了一种有望用于高功率和高能量的全固态锂离子电池的固体电解质新材料。该材料用于正极为钴酸锂、负极为锂单质的锂离子电池时,具有优异的充放电性能和循环性能。全固态锂离子电池以传统固体氧化物作电解质时,比有机电解液和固体硫化物中的离子电导率低很多。该电解质不仅有高的化学稳定性和宽的电化学窗口,而且在室温下的离子电导率比有机电解液的电导率还高出两个数量级。该固体电解质与正极不会发生副反应和材料剥离,且界面阻抗能低到和普通的液态锂离子电池接近,但界面阻抗的活化能小很多。  相似文献   

9.
作为一种固态无机电解质材料,石榴石型立方相Li7La3Zr2O12具有较高的室温锂离子电导率、较宽的电化学窗口和优良的热稳定性等特点,是高安全性、高能量密度固态锂离子电池实现商业化应用的关键。阐述了Li7La3Zr2O12的晶体结构与锂传导机理,综述了元素掺杂、聚合物电解质复合、烧结助剂引入、表面包覆或修饰等方式对Li7La3Zr2O12的物相结构稳定性、界面阻抗与相容性、烧结活性、离子电导率等进行改性的最新研究进展。最后,针对Li7La3Zr2O12在产业化应用中所面临的障碍与挑战,提出了制备新工艺的开发、离子电导率的多重改性以及柔性复合电解质膜的结构设计与优化等应对策略,为推动高性能固态锂离子电池的发展提供依据。  相似文献   

10.
体型无机全固态锂离子电池具有无安全隐患、使用温度范围广、能量密度高以及循环寿命长等优势,是未来锂离子电池的发展趋势,然而高性能全固态电池的制备仍然是研究中的难点和热点。围绕不同的制备方法,对体型无机全固态锂离子电池的结构设计、界面问题、容量性能、能量密度和循环性能的研究进展进行综述,并着重讨论了提高固态电解质综合性能、改善电极层与固态电解质层间界面问题以及合理设计电池结构的原则和方法。  相似文献   

11.
锂离子电池电解质多为有机液体,易燃易爆、安全性差。用固态电解质制备的全固态锂离子电池,具有电化学窗口宽、能量密度大和安全性高等优点,是电动汽车和规模化储能应用的理想化学电源。本工作主要介绍了全固态电解质的电解质材料及电极/电解质界面调控与机理问题,为改善固/固界面相容性及降低界面阻抗方面提供解决方案。阐述了目前主流的正负极材料、全固态锂离子电池的设计及目前的专利申请状况,简要讨论了全固态锂离子电池面临的主要问题,并从产业应用角度展望了其应用现状和未来发展趋势,为从业者全面了解全固态电池的发展提供有利依据。  相似文献   

12.
Summary In order to evaluate the effect of silica on stabilizing the interface of lithium metal electrode/solid polymer electrolyte, the cyclic behavior for silica-free and silica-containing polymer electrolyte under electrical stress was investigated using cyclic voltammetry. These electrolytes have an ionic conductivity of the order 10-4 S/cm at above 60°C and most importantly the introduction of hydrophilic silica in PEO-based polymer electrolyte has brought about the enhanced stability of lithium metal electrode/polymer electrolyte interface especially under electrical stress. This in turn supports the suitability of the composite polymer electrolytes with hydrophilic silica for fabrication of enhanced rechargeable solid lithium polymer batteries. Received: 7 May 2002/ Revised version: 10 July 2002/ Accepted: 12 July 2002  相似文献   

13.
固态电解质是高安全性、高能量密度的全固态锂电池的核心部件,其典型代表Li7La3Zr2O12(LLZO)具有高离子电导率、高机械强度、高电化学稳定性、低界面阻抗以及对锂金属负极良好的稳定性等优势,是科研人员重点关注的对象之一,但与液态电解质相比,目前LLZO仍存在低离子电导率和与电极固-固界面接触等问题。本文主要简介了LLZO的晶体结构、改性方式等对其离子电导率及界面阻抗的影响,同时对LLZO现存的问题进行了总结,对LLZO的未来发展方向进行了展望,为探索全固态锂电池的实际生产应用提供理论指导。  相似文献   

14.
Several 1-alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids (alkyl-DMimTFSI) were prepared by changing carbon chain lengths and configuration of the alkyl group, and their electrochemical properties and compatibility with Li/LiFePO4 battery electrodes were investigated in detail. Experiments indicated the type of ionic liquid has a wide electrochemical window (−0.16 to 5.2 V vs. Li+/Li) and are theoretically feasible as an electrolyte for batteries with metallic lithium as anode. Addition of vinylene carbonate (VC) improves the compatibility of alkyl-DMimTFSI-based electrolytes towards lithium anode and LiFePO4 cathode, and enhanced the formation of solid electrolyte interface to protect lithium anodes from corrosion. The electrochemical properties of the ionic liquids obviously depend on carbon chain length and configuration of the alkyl, including ionic conductivity, viscosity, and charge/discharge capacity etc. Among five alkyl-DMimTFSI-LiTFSI-VC electrolytes, Li/LiFePO4 battery with the electrolyte-based on amyl-DMimTFSI shows best charge/discharge capacity and reversibility due to relatively high conductivity and low viscosity, its initial discharge capacity is about 152.6 mAh g−1, which the value is near to theoretical specific capacity (170 mAh g−1). Although the battery with electrolyte-based isooctyl-DMimTFSI has lowest initial discharge capacity (8.1 mAh g−1) due to relatively poor conductivity and high viscosity, the value will be dramatically added to 129.6 mAh g−1 when 10% propylene carbonate was introduced into the ternary electrolyte as diluent. These results clearly indicates this type of ionic liquids have fine application prospect for lithium batteries as highly safety electrolytes in the future.  相似文献   

15.
The low ionic conductivity is a bottleneck of the inorganic solid state electrolyte used for lithium ion battery. In ceramic electrolytes, grain boundary usually dominates the total conductivity. In order to improve the grain boundary effect, an amorphous silica layer is introduced into grain boundary of ceramic electrolytes based on lithium-lanthanum-titanate, as evidenced by electron microscopy. The results showed that the total ionic conductivity could be to be enhanced over 1 × 10−4 S/cm at room temperature. The reasons can be attributed to removing the anisotropy of outer-shell of grains, supplement of lithium ions in various sites in grain boundary and close bindings among grains by the amorphous boundary layer among grains.  相似文献   

16.
全固态锂电池采用固体电解质取代液态电解质,使其具有更高安全性,且有望进 一步提高电池的能量密度。而在众多固体电解质中,具有石榴石型结构的立方相 Li7La3Zr2O12 (LLZO) 及其元素掺杂产物由于室温离子电导率较高、电化学窗口较宽、与锂金属稳定等优点, 最有可能应用于全固态锂电池中。本文对 LLZO 的物相及晶体结构、制备方法、锂离子电导率 的提升策略以及其所组装的全固态锂电池等方面进行了详细介绍,并预测了 LLZO 固体电解质 材料进一步提升锂离子电导率的潜在可能以及 LLZO 所装配的全固态锂电池的发展方向。  相似文献   

17.
Functionalized siloxane-based solid polymer electrolytes were synthesized using a platinum-catalyzed silylation reaction. The ionic conductivities of these solid polymer electrolytes were measured as a function of the concentration of lithium bis(trifluoromethylsulfonyl)imide (LiTFSi) salt. The highest ionic conductivity and lowest activation energy of solid polymer electrolytes were observed to be 1.15 × 10−4 S cm−1 (25 °C) and 3.85 kJ mol−1, respectively. The interface property between electrolyte and electrode and thermal stability of the polymer electrolytes were found to enhance after they were functionalized with acrylate, and the functionalized electrolytes were observed to maintain a glass transition temperature as low as that of other siloxane compounds. Thus, modifications involving acrylate with ethylene oxide group substitution provide a route for carrier ions and enhance both the ionic conductivity and mechanical properties of the siloxane structure.  相似文献   

18.
有机-无机复合固态电解质不仅具有聚合物电解质的柔韧性和界面相容性,还能显著提高离子传导性和力学性能。然而,构建良好的填料/聚合物分散体系是制备此类复合电解质的难点,设计新型有强相互作用的功能化填料以调控界面渗流结构也面临巨大挑战。通过功能硅烷对无机填料进行化学键联改性或原位合成是解决无机填料与聚合物间分散性和界面相容性问题的有效策略。本文综述了在复合固态电解质中利用功能硅烷对无机填料进行表面改性和原位合成、功能硅烷作为复合固态电解质的交联中心和制备离子胶类复合固态电解质四方面的研究进展,重点阐述了硅烷功能化填料与固态电解质结构和性能之间的关系。最后对功能硅烷在有机-无机复合固态电解质中的应用研究进行了总结和展望。  相似文献   

19.
随着液态锂电池的广泛应用,热失控现象时有发生,其热安全性成为亟待解决的问题。全固态锂电池以其优异的安全性显示出巨大的应用潜力。该文简要介绍了全固态锂电池的基本概念及组成结构,重点阐述了氧化物、硫化物以及聚合物固体电解质的最新研究进展,并对这3类全固态锂电池的热安全性差异进行了总结,包括固体电解质材料级别、固体电解质与活性材料或锂金属负极混合时界面级别以及全电池级别的热安全性。此外,锂枝晶现象对全固态锂电池安全性的影响仍不可忽视。目前针对材料和界面级别的热安全性研究众多,但全电池级别的研究较少,且多集中在小容量电池,针对全电池级别的热安全性仍需进一步探究。最后指出了未来高安全性全固态锂电池的商业化应用应着力于解决全固态锂电池中的关键界面问题以及锂枝晶问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号