首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
在流程模拟软件PRO Ⅱ中建立费托合成柴油分离C_(12)H_(26)双塔模拟流程和DWC模拟流程。在满足纯度要求的前提下,对双塔流程进行了优化。然后在保证相同纯度前提下利用DWC模型分析了气液相分配比、主塔理论板数、预分离段板数、隔板位置对DWC能耗的影响,最后以能耗和塔板数为目标对DWC和传统流程进行了对比。结果表明,DWC结构相比双塔流程具有明显的节能优势,加热负荷减少14. 39%,冷却负荷减少20. 45%。同时还研究了进料组成变化对DWC性能的影响。  相似文献   

2.
提出了一种新的单塔萃取精馏精制醋酸水溶液的新工艺,该工艺采用分隔壁萃取精馏塔(DWC-E)替代常规萃取精馏流程的萃取精馏塔及溶剂回收塔,不仅节省了设备投资,而且降低了总能耗。利用Aspen Plus模拟软件,对DWC-E塔及常规萃取流程进行了模拟。DWC-E塔的操作条件:塔板数40块,侧线精馏段的板数10块,回流比2,溶剂摩尔比2.5,在此条件下,比较了常规萃取精馏流程与分隔壁精馏塔内温度、液相组成及汽液相流量的变化。结果表明,DWC-E塔比常规的2塔萃取精馏流程节能23.91%。  相似文献   

3.
利用Aspen plus软件,对β-苯乙醇-乙醇-水体系的分离过程开展模拟研究,以1000 kg/h的处理量为例,对精馏分离的影响因素,如回流比、压力等进行分析探讨,获得β-苯乙醇精制工艺适宜的工艺条件为:粗蒸塔理论板数为18,适宜进料位置为第5块理论板,回流比为0. 8;萃取塔理论板数为15,萃取剂进料量为380 kg/h;精蒸塔理论板数为20,适宜进料位置为第6块理论板,回流比为0. 6;在此条件下β-苯乙醇分离精制的能耗为14吨蒸汽/吨β-苯乙醇。  相似文献   

4.
提出了非均相层析-萃取精馏分离工艺,并基于Aspen Plus对该分离过程进行模拟研究,以得到质量分数为98.3%的异丙醚和99%的异丙醇,水相异丙醚的质量分数小于2×10-5,异丙醇的质量分数小于1×10-4为目标,确定了粗馏塔、醚精制塔、异丙醇精制塔、乙二醇回收塔最佳工艺参数。粗馏塔的理论塔板数为26,进料板位置为第13块理论板,摩尔回流比为0.14。醚精制塔的理论塔板数为23,进料板位置分别为第3和15块理论板,摩尔回流比为0.92。异丙醇精制塔的理论塔板数为25,进料板位置为第3和第18块理论板,摩尔回流比为2.85。乙二醇回收塔的理论塔板数为40,进料板位置为第15块理论板,摩尔回流比为0.08。总体工艺具有流程简单、产品纯度高、易于操作的特点。  相似文献   

5.
采用分隔壁精馏塔(DWC)精馏技术对乙苯装置分离工艺进行了改进,将传统分离工艺中的苯塔和乙苯塔集成为1个分隔壁精馏塔,不仅可以实现烷基化产物的分离,而且可以有效降低装置能耗。使用Aspen Plus流程模拟软件对基于DWC的新分离工艺进行了全流程模拟,并对传统分离工艺和分隔壁塔新工艺的能耗进行了对比。计算结果表明,分隔壁塔总塔板数为58块,分隔壁在第15块到第40块塔板之间,进料位置在第24块塔板,侧线抽出苯位置在第4块板,侧线采出乙苯产品位置在第26块板,塔顶回流比为2.3。侧线抽出苯和塔顶采出苯的质量分数分别为99.44%和99.20%,中间侧线采出乙苯的质量分数为99.94%,塔釜物料中乙苯的质量分数为0.06%。分隔壁精馏塔实现了苯、乙苯和多乙苯物系的清晰分离。计算结果还表明,采用DWC分离工艺的能耗比传统的顺序分离工艺降低约41%。  相似文献   

6.
任军利 《现代化工》2014,(7):145-148
利用Aspen Plus过程模拟软件,采用乙二醇作萃取剂,模拟研究了分壁式萃取精馏对摩尔分数为82%乙醇溶液脱水的分离过程。建立了分壁式萃取精馏模型,得到了优化的工艺参数,主塔理论板数为11块,精馏段理论板数为5块,回流比为0.10;副塔原料进料位置为第14块板,萃取剂进料位置为第4块板,隔板在副塔第18块板底端,萃取精馏段回流比为0.419,溶剂比为1.1。比较了分壁式萃取精馏和常规双塔2种流程下的能耗。模拟结果表明,采用分壁式萃取精馏,再沸器能耗降低了15%,节能效果明显。  相似文献   

7.
对隔壁精馏塔的热力学等效模拟进行研究。隔壁精馏塔和全热耦合精馏Petlyuk塔在热力学上等效,通过三塔模型对隔壁精馏塔进行简捷计算,计算结果作为初值,利用Aspen Plus软件中Multifrac-Petlyuk模块对DWC进行严格模拟计算,并利用灵敏度分析模块,分别对各参数进行优化,确定最佳的塔参数及操作条件。以甲醇-乙醇-正丙醇三元体系为例,隔壁精馏塔的热力学等效模拟结果为:主塔塔板数62,预分塔塔板数30,互连位置N1为20,N2为50,基于预分塔的进料位置在第10块板,基于主塔的侧线出料位置为第38块板,主塔回流比为8,互连物流qL,12=340 kmol/h,qV,12=880 kmol/h,在此参数下,可以得到质量分数99.2%的甲醇、97.9%的乙醇和97.3%的正丙醇,满足分离要求。  相似文献   

8.
隔壁塔萃取精馏制取无水异丙醇的模拟研究   总被引:1,自引:0,他引:1  
提出一种隔壁塔萃取精馏制取无水异丙醇的新工艺.利用Aspen Plus模拟软件,对隔壁塔和常规萃取精馏工艺进行了模拟。确定了隔壁塔的主要参数:主塔为30块理论板,回流比为3.侧线精馏段为10块理论板,回流比为2,垂直隔壁位于塔内18块板到28块板之间。在此参数下.可得到质量分数99.92%的无水异丙醇;比较了2种流程的液相组成、温度及汽液相流量的变化。模拟结果表明:隔壁塔萃取精馏新工艺可以节省再沸器能耗15.6%.冷凝器能耗15.4%,能有效降低运行费用。  相似文献   

9.
用ASPEN11.1化工流程模拟软件,对乙醇胺分离工艺中的蒸氨塔、脱水塔、一乙醇胺塔、二乙醇胺塔、三乙醇胺塔进行了模拟计算,采用非随机双液体(NRTL)热力学计算模型,并进行了热力学参数修正,通过调整各塔的理论板数、进料位置和回流比,以及后二塔的塔顶回路质量流量等操作参数,得出各塔的最佳工艺条件。在最佳工艺条件下,分析了此分离过程的能耗问题。模拟结果表明:五塔流程分离得到的乙醇胺均能达到产品质量要求,工艺流程合理、可靠,对工程设计和工艺操作具有较强的指导作用。  相似文献   

10.
基于对醋酸甲酯与甲醇二元共沸特性的分析,提出热集成变压精馏分离醋酸甲酯和甲醇的工艺. 利用Aspen Plus软件对该分离过程进行模拟,以NRTL活度系数方程为物性计算方法,其二元相互作用参数由气液相平衡数据回归,分析了加压塔和常压塔的理论板数、进料位置及回流比对分离效果的影响,并进行了能耗比较. 结果表明,该工艺能很好地分离醋酸甲酯和甲醇,较佳的工艺条件为:加压塔操作压力909 kPa,理论板数32,第21块板进料,回流比4.2,塔釜醋酸甲酯纯度99.8%;常压塔操作压力101 kPa,理论板数30,第20块板进料,回流比4.6,塔釜甲醇纯度99.0%. 与常规变压精馏相比,热集成变压精馏可节能达45.8%;与以水为萃取剂的萃取精馏分离工艺相比,热集成变压精馏分离工艺更适合醋酸甲酯与甲醇体系的分离.  相似文献   

11.
隔板精馏技术是一种节能、高效的新型分离工艺。以氯化亚砜产品的精馏过程为实例,应用PRO/II软件对两塔工艺进行模拟计算,模拟结果与工业生产实际数据对比吻合良好,可以得到高纯度产品。进一步模拟计算隔板精馏塔工艺,讨论了汽液相分配比、回流量和侧线采出位置对产品纯度及能耗的影响,确定最适宜操作条件为液相分配比1.4、汽相分配比2、回流量17 000 kg/h、侧线于采出段34块板采出。在最适宜操作条件下与常规精馏塔间接、直接精馏序列相比,分别可节能25.8%和17.9%。  相似文献   

12.
为了降低空气低温分离过程的设备投资和能耗,在分析空分体系的热力学性质及流程特点的基础上,提出了一种新型的隔壁式空分精馏塔流程。应用Aspen Plus模拟软件,对空气分离的传统流程和隔壁塔流程进行了模拟对比,考察了隔壁式空分精馏塔各结构参数与操作参数对其年总成本的影响,并分析比较了空分传统流程和隔壁式空分精馏塔流程的热力学效率。结果表明,隔壁式空分精馏塔的建模合理可行,通过年总成本优化得到了该隔壁塔的最优结构参数与操作参数,分别为:液氧流量为3 kmol/h,气相分配比(体积比)为0.05,精馏段理论板数为33,侧线精馏段理论板数为30,公共提馏段理论板数为22。与传统空分流程相比,隔壁式空分精馏塔流程的有效能损失降低并且在热力学效率方面高出4.7%。  相似文献   

13.
隔板塔共沸精馏分离二氯甲烷-乙腈-水-硅醚体系   总被引:5,自引:3,他引:2       下载免费PDF全文
以二氯甲烷-乙腈-水-硅醚为分离体系,采用自制隔板塔小试装置,研究了共沸剂回流比和液相分配比等操作参数对隔板塔分离效果的影响。实验结果表明,当气相分配比Rv为0.5,共沸剂回流比为3时,液相分配比Rl在[0.12,0.2]范围内,隔板塔分离效果较好。在实验的基础上,采用Aspen Plus软件对隔板塔共沸精馏工艺进行模拟,考察了隔板塔共沸精馏工艺最佳操作区域及节能效果。模拟结果表明,特定分离要求下,隔板塔存在一个使再沸器热负荷最小的最佳操作区域,在此最佳操作区域内,Rl和Rv相互关联,呈一一对应关系;与三塔串联简单精馏工艺相比,完成相同的分离任务,隔板塔共沸精馏工艺再沸器节能32.74%,冷凝器热负荷减少33.70%,乙腈回收率由66.47%提高到96.01%,且大幅降低设备投资。  相似文献   

14.
隔板精馏塔(DWC)在节能和节省设备投资方面具有十分突出的优势,隔板精馏塔中隔板位置是重要的设计变量,影响分离效果及能耗,当进料中含有气相时这种影响更加显著。选用苯、甲苯和对二甲苯三元物系,研究了进料的气相分率对隔板位置的影响并确定最优隔板位置。采用严格模拟方法,以年度总费用(TAC)为评价指标,比较不同进料气相分率下隔板塔的经济性,其中气相进料较液相进料TAC最高可节省23.33%。并通过灵敏度分析展示了在进料中含有气相时确定最优隔板位置的重要性。  相似文献   

15.
隔板精馏塔(DWC)在节能和节省设备投资方面具有十分突出的优势,隔板精馏塔中隔板位置是重要的设计变量,影响分离效果及能耗,当进料中含有气相时这种影响更加显著。选用苯、甲苯和对二甲苯三元物系,研究了进料的气相分率对隔板位置的影响并确定最优隔板位置。采用严格模拟方法,以年度总费用(TAC)为评价指标,比较不同进料气相分率下隔板塔的经济性,其中气相进料较液相进料TAC最高可节省23.33%。并通过灵敏度分析展示了在进料中含有气相时确定最优隔板位置的重要性。  相似文献   

16.
A side distillation column is widely used to separate multicomponent mixtures into three products. However, this kind of column consumes considerable amounts of energy due to thermodynamic restrictions and the nature of the distillation process. Retrofit of the side distillation column to a dividing wall column (DWC) can result in significant energy savings. This study evaluated a systematic method for optimal retrofit of a side stream column to a DWC. The minimum energy requirement for the separation of a multicomponent mixture was used for a feasibility study. Subsequently, design and optimization was performed using shortcut, rigorous and response surface methodology. One case study was illustrated to demonstrate the proposed methodology. The results showed that the optimal retrofit of a side distillation column to the DWC could not only save a significant amount of energy, but also increase the capacity. This study highlights the potential for retrofitting a side stream column to a DWC from a techno economic point of view.  相似文献   

17.
隔壁塔技术是一种效果优良的过程强化与精馏节能技术。具有特殊结构的隔壁塔相比常规精馏塔具有较高的热力学效率。对于相同的分离任务,隔壁塔所需的能耗较低,同时隔壁塔技术的应用也降低了设备数量和投资。文中通过对隔壁塔内部结构的讨论和热力学有效能转化的分析,阐释了隔壁塔的节能原理;并以粗苯精制流程中甲苯-二甲苯-重苯的分离为例,在三组元精馏流程的分析之上设计了2套精馏流程方案,对其进行了严格计算和优化,相比于传统的顺序分离双塔流程,隔壁塔可节省能耗41.5%,同时减少了设备的数目和投资。  相似文献   

18.
提出了甲醇-乙醇-正丙醇三元混合物分壁塔精馏分离的新工艺。通过模拟和灵敏度分析,考察了分壁塔的进料位置、隔板位置、液体分配比、回流比等工艺参数对分离效果的影响,确定了分壁塔的最佳操作条件,并对分壁塔的能耗进行了分析。结果表明,单个分壁塔能达到常规三元混合物分离的要求,并且比常规精馏流程的分离过程节能约30%。  相似文献   

19.
胡雨奇  方静  李春利 《化工进展》2015,34(5):1488-1492
以三氯氢硅合成过程中得到的主副产品混合物二氯二氢硅-三氯氢硅-四氯化硅为分离物系,提出采用隔壁塔代替常规精馏序列分离的新工艺.利用Aspen Plus软件对隔壁塔进行模拟,考察回流比、隔板位置、进料位置、侧线采出位置、液相分配比以及气相分配比对塔顶、侧线以及塔釜产品摩尔分数的影响,得到隔壁塔的最佳工艺参数,并通过模拟比较隔壁塔与常规精馏序列分离此混合物的能耗情况.模拟结果表明:当回流比为6、隔板位置为主塔的第8块板和第24块板、进料位置为预分馏塔的第10块板、侧线采出位置为主塔的第15块板、液相分配比为0.21、气相分配比为0.5时,隔壁塔的分离效果最佳,主产品三氯氢硅的摩尔分数为99.999%;相比于常规精馏序列,隔壁塔再沸器节能29.09%以上,冷凝器节能29.48%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号