首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of quenching process on dielectric, ferroelectric, and piezoelectric properties of 0.71BiFeO3?0.29BaTiO3 ceramics with Mn modification (BF–BT?xmol%Mn) were investigated. The dielectric, ferroelectric, and piezoelectric properties of BF–BT?xmol%Mn were improved by quenching, especially to the BF–BT?0.3 mol%Mn ceramics. The dielectric loss tanδ of quenched BF–BT?0.3 mol%Mn ceramics was only 0.28 at 500°C, which was half of the slow cooling one. Meanwhile, the remnant polarization Pr of quenched BF–BT?0.3 mol%Mn ceramics increased to 21 μC/cm2. It was notable that the piezoelectric constant d33 of quenched BF–BT?0.3 mol%Mn ceramics reached up to 191 pC/N, while the TC was 530°C, showing excellent compatible properties. The BF–BT?xmol%Mn system ceramics showed to obey the Rayleigh law within suitable field regions. The Rayleigh law results indicated that the extrinsic contributions to the dielectric and piezoelectric responses of quenched BF–BT?xmol%Mn ceramics were larger than the unquenched ceramics. These results presented that the quenched BF–BT?xmol%Mn ceramics were promising candidates for high‐temperature piezoelectric devices.  相似文献   

2.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

3.
Lead-free piezoelectric Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCZT) thin films were fabricated on Si/SiO2/TiO2/Pt (100) substrates following chemical solution deposition technique. Microstructure of the nano-sized BCZT particles crystallized in the thin film was thoroughly characterized. Ferroelectric, dielectric and piezoelectric properties of the films were investigated in detail. The BCZT films annealed at 800°C temperature exhibited high remanent polarization of 25 ± 1 μC/cm2, energy density of 17 J/cm3, dielectric constant of 1550 ± 50 and dielectric tunability of 50%. Converse piezoelectric coefficients (d33) obtained from piezo-response force microscopy (PFM) measurements on BCZT grains of different grain size (20-100 nm) distributed on the BCZT 700 film varied widely from 90 to 230 pm/V. The same for BCZT 800 measured on different grain size (30-130 nm) varied from 120 to 295 pm/V. These BCZT thin films with high dielectric, ferroelectric, and piezoelectric properties might be good alternative to the PZT films for thin film piezoelectric device applications.  相似文献   

4.
Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [d 33], electromechanical coupling coefficient [k p], and remnant polarization [P r] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d 33 = 217 pC/N, k p = 41%, dielectric constant = 1,951, and ferroelectric properties of P r = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h.  相似文献   

5.
Li2CO3 has been used as a sintering aid for fabricating lead-free ferroelectric ceramic 0.93(Bi0.5Na0.5TiO3)-0.07BaTiO3. A small amount (0.5 wt%) of it can effectively lower the sintering temperature of the ceramic from 1200 °C to 980 °C. Unlike other low temperature-sintered ferroelectric ceramics, the ceramic retains its good dielectric and piezoelectric properties, giving a high dielectric constant (1570), low dielectric loss (4.8%) and large piezoelectric coefficient (180 pC/N). The “depolarization” temperature is also increased to 100 °C and the thermal stability of piezoelectricity is improved. Our results reveal that oxygen vacancies generated from the diffusion of the sintering aid into the lattices are crucial for realizing the low temperature sintering. Owing to the low sintering temperature and good dielectric and piezoelectric properties, the ceramics, especially of multilayered structure, should have great potential for practical applications.  相似文献   

6.
《Ceramics International》2017,43(8):5901-5906
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thin films were deposited on Pt/Ti/SiO2/Si substrates annealed from 550 to 700 °C using sol-gel process. The effects of annealing temperature on microstructure, insulating, ferroelectric and dielectric properties were characterized. The result reveals that 0.65PMN-0.35PT thin films possess a polycrystalline structure, matching well with the perovskite phase despite the existence of a slight pyrochlore phase. The film samples annealed at all temperatures exhibit relatively dense surfaces without any large voids and the grain size increases generally with the increase of the annealing temperature. Meanwhile, pyrochlore phase is considerably generated because of the deformation of perovskite phase caused by volatilization of Pb at an excessive high-temperature. The film annealed at 650 °C exhibits superior ferroelectricity with a remanent polarization (Pr) value of 13.31 μC/cm2, dielectric constant (εr) of 1692 and relatively low dielectric loss (tanδ) of 0.122 at 104 Hz due to the relatively homogeneous large grain size of 130 nm and low leakage current of approximately 10-6 A/cm2.  相似文献   

7.
Relaxor perovskite ferroelectric 0.1Bi(Zn1/2Zr1/2)O3-0.9BaTiO3(0.1BZZ-0.9BT) ceramics were successfully prepared, whose powders synthesized by the sol-gel process, with average grain size about 1.29 μm. 1.75 J/cm3 discharge energy density and good dielectric stability were obtained over a wide temperature range from 25°C to 140°C. The pulse discharge capability of 0.1BZZ-0.9BT ceramics was tested under different electric fields. The discharge time was 2.13 μs, which proved its ability to charge and discharge quickly. Complex impedance analysis and thermally stimulated depolarization current tests were applied to investigate the defect types and activation of 0.1BZZ-0.9BT ceramics. The evolution process of composite defects and oxygen vacancies profoundly affects the dielectric temperature stability of 0.1BZZ-0.9BT ceramics’ energy storage property.  相似文献   

8.
Terbium aluminum garnet (Tb3Al5O12, TAG) ceramics have become a promising magneto-optical material owing to the outstanding comprehensive performance, including the magneto-optical, thermal, and mechanical properties. Fine-grained TAG ceramics with high optical quality and mechanical properties have attracted much attention. In this study, TAG ceramics with fine grains and high optical quality are fabricated successfully by a two-step sintering method from co-precipitated nano-powders. After pre-sintered at 1525°C in vacuum and hot isostatic pressed at 1600°C, the in-line transmittance of TAG ceramics reaches 81.8% at 1064 nm, and the average grain size is 7.1 μm. The Verdet constant of TAG ceramics is −179.6 ± 4.8 rad T−1 m−1 at 633 nm and −52.1 ± 1.9 rad T−1 m−1 at 1064 nm, higher than that of commercial Tb3Ga5O12 crystals. The thermal conductivity of TAG ceramics is determined from 25 to 450°C, and the result is 5.12 W m−1 K−1 at 25°C and 3.61 W m−1 K−1 at 450°C. A comparison of mechanical properties between large- and fine-grained TAG ceramics fabricated under different conditions is conducted. The fine-grained TAG ceramics possess a bending strength of 226.3 ± 16.4 MPa, which is 9.7% higher than that of the large-grained ceramics. These results indicate that reducing the grain size on the premise of high optical quality helps improve the comprehensive performance of TAG ceramics.  相似文献   

9.
《Ceramics International》2023,49(4):6068-6076
Ferroelectric ceramics have good piezoelectric and ferroelectric properties and can be used for energy storage equipment and actuators. Nevertheless, current research on dielectric capacitors has only focused on the energy storage density, but ignored efficiency. Moreover, conventional piezoelectric materials have a large strain hysteresis. In this work, (Al0.5Nb0.5)4+ (AN) complex ions doped 0.7Bi0.5Na0.5TiO3-0.3Ba0.3Sr0.7TiO3 (BNBST) ceramics were prepared. Doping AN destroyed the long-range ordered ferroelectric domains and generated polar nano regions, resulting in a gradual thinning and inclination of polarization hysteresis loops and an increase in relaxor degree. For BNBST-3AN ceramics, a Wrec of 1.52 J/cm3 and a η of 92.1% were achieved at 150 kV/cm. Meanwhile, BNBST-3AN ceramics had good energy storage temperature stability and cycling performance. The AN doping reduced the strain hysteresis in BNBST ceramics. BNBST-2AN ceramics exhibited a longitudinal electrostrictive coefficient Q33 ~ 0.0292 m4/C2 and a field-induced strain of 0.25% with low strain hysteresis (6.67%). Furthermore, BNBST-4AN ceramics had superior dielectric temperature stability from 24 to 270 °C. All results show that BNBST-100xAN ceramics have great promise for energy storage devices and actuators.  相似文献   

10.
《Ceramics International》2016,42(8):9949-9954
In this report, the effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.  相似文献   

11.
《Ceramics International》2021,47(24):34405-34413
The sintering behavior of 0.36BiScO3-0.64PbTiO3 (0.36BS-0.64 PT) ceramics was studied to investigate the effect of grain growth by the sillenite Bi12PbO19 (BP) phase on their piezoelectric properties for application in high-temperature piezoelectric devices. The BP phase formed during calcination at temperatures <750 °C led to a grain growth anomaly of the 0.36BS-0.64 PT ceramics sintered at 1000 °C. This phase assisted the grain growth of the 0.36BS-0.64 PT ceramics by liquid phase sintering. In particular, the 0.36BS-0.64 PT ceramic calcined at 700 °C exhibited excellent piezoelectric properties with a d33 of 531 pC/N, g33 of 41×10−3 Vm/N, kp of 61.8%, and Qm of 16. In addition, the 0.36BS-0.64 PT ceramics exhibited ferroelectric relaxor-like characteristics with an extremely large relaxation coefficient (γ) of 1.94 along with high maximum dielectric permittivity temperature (426 °C).  相似文献   

12.
A facile hydrothermal route via high temperature mixing method was used to synthesize (K, Na) (Nb, Ta)O3 lead-free piezoelectric ceramic powders. The influence of Ta doping and K+/(K+ + Na+) molar ratios in the starting solution on the resultant powders were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscopy, and selected area electron diffraction. The Ta element was successfully doped into the alkaline niobate structure to form crystalline (K, Na) (Nb, Ta)O3 lead-free piezoelectric ceramics powder. The microstructure, piezoelectric, ferroelectric, and dielectric properties of the sintered (K, Na) (Nb, Ta)O3 ceramics from the obtained powders were investigated. The piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), dielectric constant (?r), and remnant polarization (Pr) of the sample sintered at 1180 °C show optimal values of 210 pC/N, 34.0%, 2302, and 19.01 μC/cm2, respectively.  相似文献   

13.
《Ceramics International》2016,42(14):15664-15670
Sodium bismuth titanate (BNT) nanopowder of molar composition 50/50 (Na0.5Bi0.5TiO3) was prepared by a sol-gel processing method. The structure and microstructure of the precursor gel as well as the ferroelectric, pyroelectric, dielectric and piezoelectric properties of the BNT were studied. BNT crystallized in the rhombohedra perovskites structure Na0.5Bi0.5TiO3 was obtained from the precursor gel by heating at 700 °C for 2 h in air. The BNT ceramic at 1100 °C sintering temperature present high crystallinity, good dielectric properties at 1 kHz (ε′=885, tan δ=0.03, Tc=370 °C), piezoelectric properties (k33=0.39, c33=105 GPa, e33=12.6 C/m2, d33=120 pC/N), high remnant polarization (Pr=47 μC/cm2) and pyroelectric coefficient (p=707 μC/m2 K) and low coercive field (Ec=55 kV/cm). Hence, the BNT prepared by sol-gel method could be used for silicon based memory device application where a low synthesis temperature is a key requirement.  相似文献   

14.
The Eu3+-modified Bi0.5Na0.5TiO3 (BNT) ceramics have been fabricated by the solid-state reaction method. The impact of Eu3+ doping on the structure, photoluminescence, and electrical properties has been studied by XRD, SEM, PL spectra, and LCR meter. X-ray diffraction analysis reveals that the crystal structure of the samples is well matched with the trigonal perovskite, and the optimal temperature of presintering is 880°C. The Eu3+-doped BNT ceramics show excellent red fluorescence at 614 nm corresponding to the 5D07F2 transition of Eu3+ under 466 nm excitation and relatively long fluorescence lifetime. The BNT-0.02Eu ceramic density is up to 5.68 g/cm3 and the relative density is up to 94.6% with sintering temperature 1075°C. The piezoelectric constant (d33) of samples has been significantly improved up to 110 pC/N by Eu3+ doping. The BNT-0.03Eu ceramic presintered at 880°C and sintered at 1050°C has good dielectric properties and excellent luminescence properties. Eu3+-doped BNT ceramics make it potential applications for novel integrated electro-optical and multifunctional devices.  相似文献   

15.
Na/Bi stoichiometry plays crucial role in determining various properties of sodium bismuth titanate-based system. In this work, we have synthesised lead free (Na0.5Bi0.5)1+x TiO3 (x?=?0, 0.02 and 0.05) ceramics by sol-gel method and systematically presented structural, dielectric and ferroelectric properties at different sintering temperature. Single phase perovskite structure with rhombohedral symmetry (R3c) is obtained for all compositions from low (850°C) to maximum (1150°C) sintering temperature. The shifting of x-ray diffraction peaks and characteristic perovskite metal-oxide vibrational band (~627?cm?1) in Fourier Transform Infra-red spectra suggests compression or expansion of crystal lattice with Na/Bi non-stoichiometry. Excess of Na/Bi comprises dense crystal growth as compared to pure Na0.5Bi0.5TiO3 composition suggesting compensation of volatile elements loss during heat treatment whose impact has also been observed in dielectric as well as ferroelectric properties. It is observed that Na0.51Bi0.51TiO3 sample with x?=?0.02 exhibits better structural, dielectric and ferroelectric properties in whole range of sintering temperature.  相似文献   

16.
Dense K0.5Na0.5NbO3 lead-free ceramics were successfully fabricated by combining cold sintering process (CSP) with annealing in air atmosphere or low pO2 atmosphere. Acetic acid was used as transition liquid. By optimizing the liquid content and pressure during CSP, the CSP samples with relative densities 74.2% were obtained with adding 15 wt% acetic acid under 800 MPa. The CSP samples were then annealed in air atmosphere between 1000 and 1100°C. The ceramics annealed at 1050°C exhibit excellent electrical properties with piezoelectric constant d33 = 125 pC/N, dielectric constant εr = 509, dielectric loss tan δ = 0.04, and remanent polarization Pr = 38.17 μC/cm2. Additionally, the mixture of K0.5Na0.5NbO3 and base metal Ni powders was also cold-sintered and then annealed in the low pO2 atmospheres in order to detect whether Ni was oxidized or not. The optimized low pO2 atmospheres to protect the Ni from oxidation are pO2 = 10−10 atm followed by reoxidizing in pO2 = 10−6 atm. The K0.5Na0.5NbO3 fabricated by CSP with annealing in the optimized low pO2 atmospheres exhibits comparable electrical properties of the ceramics annealed in air atmosphere, providing an optional approach for using base metals as electrodes.  相似文献   

17.
The effect of high doping levels of manganese (Mn) on the structure and electrical properties of (KxNa1?x)NbO3 (KNN) ceramics containing Li, Ta, and Sb has been investigated. The samples were measured using synchrotron X‐ray diffraction whereas Rietveld refinement with Fullprof was used to determine the structural information as a function of temperature. Temperature‐dependent dielectric measurement was used to compare the phase transition temperatures. The results show that Mn decreases the temperature range of phase coexistence between the orthorhombic and tetragonal phase from ~180°C to ~120°C. The Curie temperature remained unchanged with Mn addition while the dielectric constant and dielectric loss increased with Mn addition. High amounts of Mn led to a reduction in both piezoelectric and ferroelectric properties. The remnant polarization, remnant strain, and piezoelectric coefficient values decreased from 24 μC/cm2, 0.000824, 338 ± 37 pm/V to 13 μC/cm2, 0,00014 and 208 ± 27 pm/V, respectively for the undoped and 5 mol% Mn‐doped sample.  相似文献   

18.
Textured (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) ceramics with a relative density of >94% were fabricated by reactive-templated grain growth. Plated-like Bi4Ti3O12 template particles synthesized by the NaCl–KCl molten salt process were aligned by tape casting in a mixture of original oxide powders. The effect of sintering temperature on the grain orientation and electrical properties of textured NKBT ceramics were investigated. The results show that the textured ceramics have a microstructure with plated-like grains aligning in the direction parallel to the casting plane. The degree of grain orientation increased at increasing sintering temperature. The textured ceramics show anisotropic electrical properties in the directions parallel and perpendicular to the casting plane. The dielectric constant parallel to {h 0 0} plane is three times higher than that of the perpendicular direction in textured NKBT ceramics. The optimized sintering temperature is 1150 °C where the maximum dielectric constant is 2041, the remnant polarization is 68.7 μC/cm2, the electromechanical coupling factor (k31) and the piezoelectric constant (d33) amount to 0.31 and 134 pC/N, respectively.  相似文献   

19.
Er‐doped 0.94Bi0.5Na0.5TiO3‐0.06BaTiO3 (BNT‐6BT: xEr, x is the molar ratio of Er3+ doping) lead‐free piezoceramics with = 0–0.02 were prepared and their multifunctional properties have been comprehensively investigated. Our results show that Er‐doping has significant effects on morphology of grain, photoluminescence, dielectric, and ferroelectric properties of the ceramics. At room temperature, the green (550 nm) and red (670 nm) emissions are enhanced by Er‐doping, reaching the strongest emission intensity when = 0.0075. The complex and composition‐dependent effects of electric poling on photoluminescence also have been measured. As for electrical properties, on the one hand, Er‐doping tends to flatten the dielectric constant‐temperature (εrT) curves, leading to temperature‐insensitive dielectric constant in a wide temperature range (50°C–300°C). On the other hand, Er‐doping significantly decreases the ferroelectric‐relaxor transition temperature (TF–R) and depolarization temperature (Td), with the TF–R decreasing from 76°C to 42°C for x = 0–0.02. As a result, significant composition‐dependent electrical features were found in ferroelectric and piezoelectric properties at room temperature. In general, piezoelectric and ferroelectric properties tend to become weaker, as confirmed by the composition‐dependent piezoelectric coefficient (d33), planar coupling factor (kp), and the shape of polarization‐electric field (PE), current‐electric field (J–E), bipolar/unipolar strain‐electric field (S–E) curves. Furthermore, to understand the relationship between the TF–R/Td and the electrical properties, the composition of = 0.0075 has been intensively studied. Our results indicate that the BNT‐6BT: xEr with appropriate Er‐doping may be a promising multifunctional material with integrated photoluminescence and electrical properties for practical applications.  相似文献   

20.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号