首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toughening of boron carbide (B4C) without hardness degradation, was achieved by hierarchical structures consisting of B4C micro-grains, titanium diboride (TiB2) grains, and graphitic phases along B4C grain boundaries. Such hierarchical structures were uniquely achieved by co-sintering of B4C micro-powder and carbon-rich B4C nano-powder, in situ formation of TiB2, and by utilizing the short sintering time of field-assisted sintering technology. Toughening mechanisms observed after micro-indentation include crack deflection and delamination of graphite platelets, micro-crack toughening and crack deflection/bridging by TiB2 grains. Fracture toughness enhancement was achieved while maintaining hardness: 4.65 ± 0.49 MPa m1/2 fracture toughness and 31.88 ± 1.85 GPa hardness for a micro/nano B4C-TiB2 composite (15 vol% TiB2 and 15 vol% B4C nano-powders) vs. 2.98 ± 0.24 MPa m1/2 and 32.46 ± 1.67 GPa for a reference micro B4C sample. In future, macro-scale mechanical testing will be conducted to further evaluate how these micro-scale hierarchical structures can be translated to macro-scale mechanical properties.  相似文献   

2.
B4C-TiB2 composites were contaminated with WC to study the effect on densification, microstructure and properties. WC was introduced through a mild or a high energy milling with WC-6?wt%Co spheres or directly as sintering aid to 50?vol% B4C / 50?vol%TiB2 mixtures. High energy milling was very effective in improving the densification thanks to the synergistic action of WC impurities, acting as sintering aid, and size reduction of the starting TiB2-B4C powders. As a result, the sintering temperature necessary for full densification decreased to 1860?°C and both strength and hardness benefited from the microstructure refinement, 860?±?40 MPa and 28.5?±?1.4?GPa respectively. High energy milling was then adopted for producing 75?vol% B4C/25?vol% TiB2 and 25?vol% B4C/ 75vol%TiB2 mixtures. The B4C-rich composition showed the highest hardness, 32.2?±?1.8?GPa, whilst the TiB2-rich composition showed the highest value of toughness, 5.1?±?0.1?MPa?m0.5.  相似文献   

3.
B4C composites with 15 and 30 vol% TiB2 were pulsed electric current sintered from B4C-TiO2-carbon black mixtures in vacuum at 2000 °C. Full densification could be realised when applying an optimized loading cycle in which the maximum load is applied after completion of the B4C-TiB2 powder synthesis, allowing degassing of volatile species. The influence of the sintering temperature on the phase constitution and microstructure during synthesis and densification was assessed from interrupted sintering cycles. The in situ conversion of TiO2 to TiB2 was a complex process in which TiO2 is initially converted to TiB2 with B2O3 as intermediate product at 1400-1700 °C. At 1900-2000 °C, B2O3 reacted with C forming B4C and CO. The B4C and TiB2 grain size in the fully densified 30 vol% TiB2 composite was 0.97 and 0.63 μm, combining a Vickers hardness of 39.3 GPa, an excellent flexural strength of 865 MPa, and modest fracture toughness of 3.0 MPa m1/2.  相似文献   

4.
SiC–TiB2 composites with up to 50 vol% TiB2 were fabricated by in-situ reaction between TiO2, B4C and C. The densification of the uniaxially pressed samples was done using pressureless sintering in the presence of sintering aids consisting of Al2O3 and Y2O3. The influence of the volume fraction of TiB2 and sintering temperature on density and fracture toughness was examined. It was found that fracture toughness is strongly affected by the volume fraction of TiB2. The presence of TiB2 particles suppresses the grain growth of SiC and facilitates different toughening mechanisms to operate which, in turn, increases fracture toughness of the composite. The highest value for fracture toughness of 5.7 MPa m1/2 was measured in samples with 30 vol% TiB2 sintered at 1940 °C.  相似文献   

5.
B4C‒15 vol% TiB2 composites were fabricated by in situ reactive spark plasma sintering with B4C, TiC, and amorphous B powders as the raw materials. The size coupling of initial B4C and TiC particles was optimized based on the reaction mechanism to derive B4C‒TiB2 composites with enhanced microstructure and properties. During the reactive sintering, fine B4C–TiB2 particles were firstly formed by an in situ reaction between TiC and B. Then, large B4C particles tended to grow at the cost of small B4C particles. The in situ TiB2 grains gradually grew up and interconnect, distributing around the large B4C grains to form an intergranular TiB2 network. The results showed that the B4C‒15 vol% TiB2 composite prepared from 3.12 μm B4C powder and 0.80 μm TiC powder had the optimal comprehensive properties, with a relative density of 99.50%, a Vickers hardness of 31.84 GPa, a flexural strength of 780 MPa, a fracture toughness of 5.77 MPa·m1/2, as well as an electrical resistivity of 3.01 × 10−2 Ω·cm.  相似文献   

6.
This research aimed to study the influence of different amounts of hBN additive on the mechanical properties and microstructure of TiB2-15 vol% SiC samples. All ceramics, containing 0, 3.5, and 7 vol% hBN, were sintered at 2000 °C using a hot-pressing route and reached their near full densities. Thanks to two different chemical reactions among the SiC reinforcement and the TiB2 surface oxides (B2O3 and TiO2), the in-situ phases of SiO2 and TiC were generated over the sintering process. The intergranular mode was identified as the predominant fracture type in all three composite samples. The hBN additive could contribute to grain refining of composites so that the sample containing 7 vol% hBN reached the finest microstructure. Finally, the highest Vickers hardness of 25.4 HV0.5 kg and flexural strength of 776 MPa were attained for the TiB2–SiC and TiB2–SiC-7 vol% hBN samples, respectively.  相似文献   

7.
Spark plasma sintering (SPS) was employed to consolidate powder specimens consisting of B4C and various B4C-TiB2 compositions. SPS allowed for consolidation of pure B4C, B4C-13 vol.%TiB2, and B4C-23 vol.%TiB2 composites achieving ≥99 % theoretical density without sintering additives, residual phases (e.g., graphite), and excessive grain growth due to long sintering times. Electron and x-ray microscopies determined homogeneous microstructures along with excellent distribution of TiB2 phase in both small and larger-scaled composites. An optimized B4C-23 vol.%TiB2 composite with a targeted low density of ~3.0 g/cm3 exhibited 30–35 % increased hardness, fracture toughness, and flexural bend strength compared to several commercial armor-grade ceramics, with the flexural strength being strain rate insensitive under quasistatic and dynamic loading. Mechanistic studies determined that the improvements are a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a toughening and strengthening phase, and scaling of SPS samples show promise for the manufacture of ceramic composites for body armor.  相似文献   

8.
The effects of Al addition on pressureless-sintering of B4C-TiB2 composites were studied. Different amounts of Al from 0% to 5 wt.% were added to B4C-TiB2 mixtures (containing up to 30 wt.% TiB2) and the samples were pressureless sintered at 2050 °C and 2150 °C under Ar atmosphere. Physical, microstructural and mechanical properties were analysed and correlated with TiB2 and Al additions and sintering temperature. Addition of Al to B4C-TiB2 results in increased shrinkage upon sintering and final relative density and lower porosity, the effect is being more evident when both Al and TiB2 are present. Fracture strength, elastic modulus and fracture toughness of 450 MPa, 500 GPa and 6.2 MPa.m1/2, respectively were measured.  相似文献   

9.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

10.
High electrical resistance and low fracture toughness of B4C ceramics are 2 of the primary challenges for further machining of B4C ceramics. This report illustrates that these 2 challenges can be overcome simultaneously using core‐shell B4C‐TiB2&TiC powder composites, which were prepared by molten‐salt method using B4C (10 ± 0.6 μm) and Ti powders as raw materials without co‐ball milling. Finally, the near completely dense (98%) B4C‐TiB2 interlayer ceramic composites were successfully fabricated by subsequent pulsed electric current sintering (PECS). The uniform conductive coating on the surface of B4C particles improved the mass transport by electro‐migration in PECS and thus enhanced the sinterability of the composites at a comparatively low temperature of 1700°C. The mechanical, electrical and thermal properties of the ceramic composites were investigated. The interconnected conductive TiB2 phase at the grain boundary of B4C significantly improved the properties of B4C‐TiB2 ceramic composites: in the case of B4C‐29.8 vol% TiB2 composite, the fracture toughness of 4.38 MPa·m1/2, the electrical conductivity of 4.06 × 105 S/m, and a high thermal conductivity of 33 W/mK were achieved.  相似文献   

11.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

12.
Square-shaped monolithic B4C and B4C-ZrB2 composites were produced by spark plasma sintering (SPS) method to investigate the effect of 5, 10, 15 vol% ZrB2 addition on the densification, mechanical and microstructural properties of boron carbide. The relative density of B4C increased with the increasing volume fraction of ZrB2 and density differences in different regions of the sample narrowed down. Homogeneous density distribution and microstructure were accomplished with the increasing holding time from 7 to 20 min for the B4C-15 vol% ZrB2 composites, and the highest overall relative density was achieved as 99.23%. The hardness and fracture toughness of composites were enhanced with the addition of ZrB2 compared to monolithic B4C. The enhancement in fracture toughness was observed due to the crack deflection, crack bridging and crack branching mechanisms. The B4C-15 vol% ZrB2 composite exhibited the combination of superior properties (hardness of 33.08 GPa, Vickers indentation fracture toughness of 3.82 MPa.m1/2).  相似文献   

13.
High-dense SiC-(TixZr1?x)B2 composite ceramics were fabricated by in-situ synthesis of (TixZr1?x)B2 solid solution using solid-state spark plasma sintering (SPS). 64 vol% SiC, 20 vol% ZrB2, 15 vol% TiB2, and 1 vol% graphite powders are chosen as raw materials. The composite ceramics has the relative density of 99.97 %, the Vickers hardness of 24.71 GPa, the flexure strength of 435 MPa and the fracture toughness of 8.05 MPa ? m1/2. Compared with the single-phase SiC ceramics and SiC-TiB2 composite ceramics, the fracture toughness of SiC-(TixZr1?x)B2 composite ceramics increased by 242.6 % and 53.6 %, respectively. A shell-core structure is found in the SiC-(TixZr1?x)B2 composite ceramics, in which (TixZr1?x)B2 solid solution is the core and fine SiC grain is the shell. The results show that the toughening effect of solid-state sintered SiC-(TixZr1?x)B2 composite ceramics is attributed to the shell-core structure.  相似文献   

14.
High-performance B4C composites toughened by TiB2-SiC agglomerates were fabricated via reactive hot pressing with B4C, TiC and Si as raw materials. The TiB2-SiC composite serves as a composite toughening phase formed in the B4C matrix through an in situ reaction; its agglomerates are composed of interlocked TiB2 and SiC, which can remarkably improve the toughness of the B4C composites. The Vickers hardness, flexural strength and fracture toughness of the B4C-TiB2-SiC composite reached 35.18 ± 0.45 GPa, 567 ± 14 MPa, and 6.38 ± 0.18 MPa m1/2 respectively. The special toughening structure of the TiB2-SiC composite introduced into B4C ceramics was evaluated for the first time in this study.  相似文献   

15.
《Ceramics International》2020,46(6):7403-7412
The impact of various volume percentages of TiB2 additive (0, 10, 20, and 30) on the microstructure, relative density (RD), Vickers hardness, flexural strength, and thermal conductivity of as-sintered TiC-10 vol% SiCw-based composite samples were scrutinized. All four samples were sintered using the SPS method under the following circumstances; sintering temperature of 1900 °C, dwell time of 7 min, and external pressure of 40 MPa. The best relative density of 98.73% was achieved for the sample with no TiB2 additive, indicating the negative effect of TiB2 additive on the RD and formation of porosity. The microstructural observations and XRD results confirmed the chemical interaction of TiO2 and B2O3 oxide layers and SiCw and in-situ formation of the TiSi brittle phase and TiC. The most significant values of flexural strength (511 MPa) and hardness (27.67 GPa) were related to TiC-10 vol% SiCw and TiC-10 vol% SiCw-30 vol% TiB2 samples, respectively. On the contrary, the specimens with 30 vol% and 10 vol% TiB2 as additive presented the poorest qualities of flexural strength (234 MPa) and Vickers hardness (22.12 GPa). Finally, the influence of the TiB2 content on the thermal conductivity was evaluated, indicating the positive impact of this secondary phase on this characteristic, so with adding 30 vol% TiB2 to TiC-10 vol% SiCw, a thermal conductivity of 30.7 W/m.K was obtained.  相似文献   

16.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

17.
B4C-TiB2-SiC composites were fabricated via hot pressing using ball milled B4C, TiB2, and SiC powder mixtures as the starting materials. The impact of ball milling on the densification behaviors, mechanical properties, and microstructures of the ceramic composites were investigated. The results showed that the refinement of the powder mixtures and the removal of the oxide impurities played an important role in the improvement of densification and properties. Moreover, the formation of the liquid phases during the sintering was deemed beneficial for densification. The typical values of relative density, hardness, bending strength, and fracture toughness of the composites reached 99.20%, 32.84?GPa, 858?MPa and 8.21?MPa?m1/2, respectively. Crack deflection, crack bridging, crack branching, and microcracking were considered to be the potential toughening mechanisms in the composites. Furthermore, numerous nano-sized intergranular/intragranular phases and twin structures were observed in the B4C-TiB2-SiC composite.  相似文献   

18.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

19.
The B4C-diamond composite with high hardness and toughness was first prepared by high-pressure sintering of B4C and diamond powders at 5 GPa and 1600 °C. The effect of the diamond fraction on the densification, microstructure and mechanical properties of B4C-diamond composite were investigated. The results indicated that the hardness of the as-prepared composite ceramics increased gradually with the increase in diamond content. The composite having 40 vol% diamond exhibited excellent comprehensive mechanical properties with a relative density of 98.3%, a density of 2.86 g/cm3, Vickers hardness of 39.8 GPa and fracture toughness of 8.1 MPa·m1/2. The use of superhard diamond enhanced the fracture toughness of the B4C while maintaining its lightweight and high hardness. The main toughening mechanisms were crack bridging, crack deflection and pull-out of homogeneously dispersed diamond grains. Superhard second phase dispersion high-pressure sintering provides a new technical route to improve the properties of advanced composites.  相似文献   

20.
Micromechanics modeling was performed to study the effects of thermal residual stress, weak interphases, TiB2 volume fraction and particle size on the mechanical responses and fracture behaviors of B4C-TiB2 composites. Experimentally observed fracture behaviors including micro-cracking and crack deflection were successfully captured. The weak interphases at B4C-TiB2 boundaries and the thermal residual stress induced during cooling by the large CTE mismatch between B4C and TiB2 were identified as two major factors to promote micro-cracking that caused the enhanced progressive failure behavior. Micro-cracking was enhanced with higher TiB2 volume fraction due to higher fraction of weak interphase and material affected by thermal residual stress. Meanwhile, micro-cracking behaviors exhibited limited change with varying TiB2 particle sizes. This modeling study successfully captured the main fracture behaviors and their trends by varying micro-structures of B4C-TiB2 composites and can potentially aid microstructure design of tougher B4C-TiB2 composites in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号