首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of Ce3+, Tb3+, Eu3+ tri‐doped Ba2Y(BO3)2Cl red‐emitting phosphor have been synthesized by solid‐state method. The Ce3+→Tb3+→Eu3+ energy‐transfer scheme has been proposed to realize the sensitization of Eu3+ ion emission by Ce3+ ions. Following this energy‐transfer model, near‐UV convertible Eu3+‐activated red phosphors have been obtained in Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ phosphors. Energy transfers from Ce3+ to Tb3+, and Tb3+ to Eu3+, as well as corresponding energy‐transfer efficiencies are investigated. The combination of narrow‐line red emission and near‐UV broadband excitation makes Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ as a novel and efficient red phosphor for NUV LED applications.  相似文献   

2.
《Ceramics International》2016,42(5):6115-6120
Ce3+ and Tb3+ singly doped and co-doped GdAl3(BO3)4 phosphors were synthesized by solid state reaction. The crystal structure, the luminescent properties, the lifetimes and the temperature-dependent luminescence characteristic of the phosphors were investigated. Through an effective energy transfer, the emission spectra of GdAl3(BO3)4:Ce3+, Tb3+ phosphor contains both a broad band in the range of 330–400 nm originated from Ce3+ ions and a series of sharp peaks at 484, 541, 583, and 623 nm due to Tb3+ ions. The energy transfer from Ce3+ to Tb3+ in GdAl3(BO3)4 host is demonstrated to be phonon assisted nonradiative energy transfer via a dipole–dipole interaction.  相似文献   

3.
《Ceramics International》2015,41(7):8988-8995
A series of white-light-emitting phosphors of single-phase Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ were synthesized by conventional solid-state reaction. The crystal structure of the host was characterized by X-ray diffraction and investigated by Rietveld refinement. Photoluminescence properties were studied in detail. The energy transfer from Ce3+ to Tb3+ in Ba2Mg(BO3)2 host was investigated and demonstrated to be a resonant type via a quadrupole–quadrupole mechanism. White light with wavelength tunable was realized by coupling the emission bands peaking at 417, 543 and 626 nm attributed to Ce3+, Tb3+ and Eu2+, respectively. By properly tuning the relative composition of Ce3+(Na+)/Tb3+/Eu2+, optimized Commission Internationale de l׳Eclairage (CIE) chromaticity coordinates (0.363, 0.295), high color rendering index (CRI) 90 and low correlated color temperature (CCT) 3793 K were obtained from the phosphor of Ba1.90Ce0.04Na0.04Eu0.02Mg0.94Tb0.06(BO3)2 upon the excitation of 296 nm UV radiation. These results indicate that Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor has a potential application as an UV radiation down-converting phosphor in white-light-emitting diodes.  相似文献   

4.
A series of newly developed color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors were successfully prepared in this study. The crystal structures of the prepared phosphors were revealed to be hexagonal with space group P63/m, and the lattice parameters were evaluated via utilizing the Rietveld refinement method. Upon excitation at 288 nm, the emission spectra of Ce3+and Tb3+ ions co‐doped Ca3La6(SiO4)6 phosphors included a blue emission band and several emission lines. The blue emission band with a peak at 420 nm originated in the fd transitions of Ce3+ ions, and the emission lines in the range of 450–650 nm were assigned to the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. Increasing the doping content of Tb3+ ions considerably strengthened Tb3+ emission and reduced Ce3+ emission owing to the energy transfer from Ce3+ to Tb3+ ions. The mechanism of the energy transfer was confirmed to be a dipole–dipole interaction. The effective energy transfer from Ce3+ to Tb3+ ions caused a color shift from purplish‐blue to yellowish‐green. Color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors have the potential to be utilized in light‐emitting diodes with proper modulation of the amount of Tb3+ ions.  相似文献   

5.
A series of single-component blue, green and red phosphors have been fabricated based on the Ca3Gd(GaO)3(BO3)4 host through doping of the Ce3+/Tb3+/Eu3+ ions, and their crystal structure and photoluminescence properties have been discussed in detail. A terbium bridge model via Ce3+ → Tb3+ → Eu3+ energy transfer has been studied. The emission colours of the phosphors can be tuned from blue (0.1661, 0.0686) to green (0.3263, 0.4791) and eventually to red (0.5284, 0.4040) under a single 344 nm UV excitation as the result of the Ce3+ → Tb3+ → Eu3+ energy transfer. The energy transfer mechanisms of Ce3+ → Tb3+ and Tb3+ → Eu3+ were found to be dipole-dipole interactions. Importantly, Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors had high internal quantum efficiency. Moreover, the study on the temperature-dependent emission spectra revealed that the Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors possessed good thermal stability. The above results indicate that the phosphors can be applied into white light-emitting diodes as single-component multi-colour phosphors.  相似文献   

6.
High-efficient Ce3+/Tb3+ co-doped Ba3Y2B6O15 phosphors with multi color-emitting were firstly prepared, and their structural and luminescent properties were studied by XRD Rietveld refinement, emission/excitation spectra, fluorescence lifetimes as well as temperature-variable emission spectra. Upon 365?nm excitation, the characteristic blue Ce3+ band along with green Tb3+ peaks were simultaneously found in the emission spectra. Moreover, by increasing concentration of Tb3+, a blue-to-green tunable emitting color could be realized by effective Ce3+→Tb3+ energy transfer. Furthermore, all Ba3Y2B6O15: Ce3+, Tb3+ phosphors exhibit high internal quantum efficiency of ~?90%, while the temperature-variable emission spectra reveal that the phosphors possess impressive color stability as well as good thermal stability (T50 =?~?120?°C). The results indicate that these efficient color-tuning Ba3Y2B6O15: Ce3+, Tb3+ might be candidate as converted phosphor for UV-excited light-emitting diodes.  相似文献   

7.
Series of UV excited Ba3Lu(PO4)3:Tb3+,Mn2+ phosphors with tunable green to red emissions had been prepared using solid state reactions. Powder X-ray diffraction and Rietveld structure refinement were used to investigate the phase purity and crystal structure of the prepared samples. Under UV excitation, the Ba3Lu(PO4)3:Tb3+,Mn2+ samples exhibited not only the typical Tb3+ emission peaks but also the broad emission band of Mn2+ ions due to the efficient Tb3+→Mn2+ energy transfer which had been verified by luminescence spectra and decay curves. Utilizing the Inokuti-Hirayama model, the Tb3+→Mn2+ energy transfer mechanism was determined to be the electronic dipole–quadrupole interaction. Moreover, the emission spectra of Ba3Lu(PO4)3:0.80Tb3+,0.015Mn2+ sample at different temperatures manifested that our prepared phosphors possessed good thermal stability. The luminescence properties investigation results revealed the potential value of Ba3Lu(PO4)3F:Tb3+,Mn2+ in application for UV excited phosphor converted white light emitting diodes.  相似文献   

8.
Novel blue‐green emitting Ce3+‐ and Tb3+‐activated K2CaP2O7 (KCPO) luminescent materials were synthesized via a solid‐state reaction method. X‐ray diffraction, luminescence spectroscopy, decay time, and fluorescent thermal stability tests have been used to characterize the prepared samples. The KCPO:Ce3+,Tb3+ luminescence spectra show broad band of Ce3+ ions and characteristic line of Tb3+ ion transition (5D47F5). The color variation in the light emitting from blue to green under UV excitation can be obtained by tailoring the Tb3+ content in KCPO:Ce3+. Besides, Ce3+ ions obviously intensify Tb3+ ion emission through an effective energy transfer process, which was confirmed from decay curves. The energy transfer efficiency was determined to be 82.51%. A resonant type mechanism via the dipole–quadrupole interaction can be proposed for energy transfer. As a whole, the KCPO:Ce3+,Tb3+ phosphor exhibits excellent performance in the range from 77 to 673 K, indicating the phosphors are highly potential candidates for solid‐state lighting.  相似文献   

9.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

10.
Terbium‐activated YAl3(BO3)4 (YAl3(BO3)4:Tb3+) phosphors were synthesized by both combustion method and solid‐state reaction. It was found that the pure‐phase YAl3(BO3)4 phosphors synthesized by combustion method were obtained at 1000°C, which was 200°C lower than that by solid‐state reaction. The average particle size of the combustion‐derived phosphors increased with increasing temperatures. The luminescence characteristics in ultraviolet (UV) — vacuum ultraviolet (VUV) ranges for the YAl3(BO3)4:Tb3+ phosphors were investigated. The bands from 175 nm to 300 nm were attributed to the 4f8‐4f75d1 transitions of Tb3+. The other strong bands in the region from 125 nm to 175 nm were assigned to host absorption. The emission spectra showed the strongest emission at 542 nm corresponding to the 5D47F5 transition of Tb3+. Moreover, the combustion‐derived YAl3(BO3)4:Tb3+ phosphors generated more intense luminescence than the solid‐state‐derived phosphors under UV excitation.  相似文献   

11.
A new borate phosphor NaBaY(BO3)2: Ce3+, Tb3+ (NBY:Ce3+, Tb3+) was successfully synthesized under low temperature designed to put into application in the fields of ultraviolet (UV)‐excited light emitting diodes (LEDs) and field emission displays (FEDs). The structure distortion between Ce3+, Tb3+ single‐ and co‐doping NBY was discussed by X‐ray powder diffraction Rietveld refinement, high‐resolution transmission electron microscopy (HRTEM) and spectra. NBY: Ce3+, Tb3+ presents a wide absorption band ranging from 310 to 400 nm and efficient green emission (λmax = 542 nm) with a full‐width at half‐maximum of 3.3 nm. The remarkable thermal stability has also been tested, indicating that the intensity at 200°C is still beyond 70% of the original intensity. In addition, a white LED device was manufactured by connecting a 370 nm UV chip with a blend of BaMaAl10O17: Eu2+ (BAM: Eu2+), NBY: Ce3+, Tb3+ and CaAlSiN3: Eu2+. The color coordinate, correlated color temperature and color rendering index of the manufactured LED device were (0.335, 0.347), 5511 K and 80.16, respectively. Meanwhile, the cathodoluminescence (CL) spectra under the various conditions of probe currents and accelerating voltages were also analyzed. Through successive excitation of low‐voltage electron‐beam, the wonderful performances of degradation property and color stability were obtained. These results suggest that the green‐emitting NBY: Ce3+, Tb3+ phosphor has the prospect of becoming applications in white UV LEDs and FEDs.  相似文献   

12.
The paper investigates the effect of co‐doping Tb3+ as an energy‐transfer sensitizer on optical properties of YAG:Re3+ (where, Re = Ce, Eu) phosphor films synthesized by sol–gel route. The results suggest that, Tb3+ is a promising sensitizer for improving the optical performances of the as‐prepared YAG:Re3+ films, and a Tb3+ co‐doping concentration of 20% was found to be an optimum level on account of Tb3+ concentration quenching. Due to the energy‐transfer processes of Tb3+→Re3+, the as‐prepared Y0.8 Tb0.2AG:Re3+ films displayed strong abilities of absorption in the ultraviolet (UV) light range, and bright green–yellow emission for YAG:Ce3+ or red emission for YAG:Eu3+ under 275 nm irradiation, which could be utilized for UV‐excited WLED and display applications.  相似文献   

13.
A series of phosphors Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ have been prepared by a hightemperature solid‐state reaction using boric acid as flux. These oxyfluorides crystallize in cubic structure, space group. Under the near ultraviolet excitation within wavelength range 310–390 nm, Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors exhibit an intense emission covering a broad band of 370–500 nm derived from the 5d→4f transitions of Ce3+ and a characteristic emission at 544 nm of Tb3+. The emission can be tuned from blue to green by altering the relative ratio of Ce3+ to Tb3+ in the composition. The energy‐transfer mechanism from Ce3+ to Tb3+ is investigated based on the site occupancy of the luminescence center in the crystal structure of the Ca12Al14O32F2 host. More importantly, when a certain amount of boric acid is added as flux in the synthesis, the fluorescence intensity of the phosphors increases about 65%. Because of its broad excitation and efficiently tunable blue to green luminescence, the Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors may find promising application as a near UV‐convertible phosphor for white‐light‐emitting diodes.  相似文献   

14.
Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The luminescent properties of Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were investigated by using the photoluminescence emission, excitation spectra and reflectance spectra, respectively. The excitation spectra indicate that this phosphor can be effectively excited by near ultraviolet (n-UV) light of 317 nm. Under the excitation of 317 nm, Sr2B2O5:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the fd transition of Ce3+ ions and green emission bands corresponding to the ff transition of Tb3+ ions, respectively. The Reflectance spectra of the Sr2B2O5:Ce3+,Tb3+ phosphors are noted that combine with Ce3+ and Tb3+ ion absorptions. Effective energy transfer occurred from Ce3+ to Tb3+ in Sr2B2O5 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 90%. The phosphor Sr2B2O5:Ce3+,Tb3+ could be considered as one of double emission phosphor for n-UV excited white light emitting diodes.  相似文献   

15.
Blue‐emitting phosphor of Ce3+‐activated fluorosilicate apatite Ba2Y3[SiO4]3F was prepared via conventional solid‐state reaction method. The X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) excitation and emission spectra, and the decay curves (lifetimes) were applied to characterize the phosphors. The effects of Ce3+ activator concentration on the luminescence properties were investigated. Ba2Y2.85Ce0.15[SiO4]3F exhibits the brightest blue emission with CIE coordinates of (= 0.231, = 0.301). The crystallographic site of Ce3+ ions in Ba2Y3[SiO4]3F lattices was identified. Two kinds of crystallographic Ce3+ occupying MI and MII sites in Ba2Y3[SiO4]3F lattices result in two distinct emission centers. The internal PL quantum efficiency, the temperature‐dependent luminescence, and the activation energy of thermal quenching were investigated to evaluate the potential application. This is a new kind of blue‐emitting phosphor based on apatite structure.  相似文献   

16.
Spectroscopic properties of Ba2Gd(BO3)2Cl: Dy3+ and Ba2Gd(BO3)2Cl: Dy3+, Tm3+ under vacuum ultraviolet (VUV) and ultraviolet (UV) light excitations were investigated. Dy3+ single‐doped Ba2Gd(BO3)2Cl showed broad absorption band in the VUV region, and bright warm white light with chromaticity coordinates (CIE) of (0.340, 0.381) upon VUV excitation at 172 nm, demonstrating this phosphor's applicability in mercury free lamps. Upon direct excitation Tm3+ from its 6F6 level to 1D2 level, the decrease of emission intensity and lifetime of Tm3+ 1D23F4 emission with increasing concentration of Dy3+ in Ba2Gd(BO3)2Cl: Dy3+, Tm3+ confirmed the occurrence of energy transfer from Tm3+ to Dy3+. In addition, Ba2Gd(BO3)2Cl: Dy3+, Tm3+ could be efficiently excited by 358 nm UV light and its emission color could be tuned from blue to yellow by codoping Tm3+. When 1% Tm3+ and 5% Dy3+ were codoped in the Ba2Gd(BO3)2Cl, intensive white‐emitting light with CIE of (0.352, 0.328) and correlated color temperature of 4589 K was achieved upon 358 nm excitation, revealing the potential application of Ba2Gd(BO3)2Cl: Dy3+, Tm3+ for white light‐emitting diodes (LEDs).  相似文献   

17.
《Ceramics International》2015,41(4):5554-5560
A series of color-tunable NaCaBO3: Ce3+, Tb3+ phosphors have been synthesized on the basis of efficient Ce3+→Tb3+ energy transfer. The photoluminescence emission and excitation spectra, the lifetime, and the effect of Tb3+ concentration are investigated in detail. The enhanced photoluminescence of Tb3+ with sharp emission lines could be obtained by the broad excitation band from the allowed 4f–5d absorption of Ce3+ ions. The intensity ratio of blue emission from Ce3+ and green emission from Tb3+ can be tuned by adjusting their concentrations. The energy transfer from Ce3+ to Tb3+ in NaCaBO3 was found to be an electric dipole–quadrupole interaction.  相似文献   

18.
KSr(Gd,Y)(PO4)2: Tb3+ phosphors were synthesized using the high‐temperature solid‐state reaction method. The VUV–UV spectroscopic properties of these phosphors were studied. The results show that efficient energy transfer (ET) from Gd3+ to Tb3+ occurs in this system, and the ET efficiency increases with increasing of Tb3+ doping concentrations, which is evidenced that both the emission intensity and decay time of Gd3+ decreases with increasing Tb3+ doping concentrations. Visible quantum cutting via cross relaxation between the neighboring Tb3+ ions was observed in the high Tb3+ concentration doped sample. In addition, the emission color of KSr(Gd,Y)(PO4)2: Tb3+ phosphors can be tuned from blue to yellowish‐green by varying the doping concentration of Tb3+. Under 147 nm excitation, the sample KSrGd0.5(PO4)2: 0.5Tb3+ exhibits the strongest emission, which is about 70% of the commercial green‐emitting phosphor Zn2SiO4: Mn2+ indicating the potential application of this phosphor for plasma display panels, Hg‐free lamps, and three‐dimensional displays.  相似文献   

19.
Using the solid‐state reaction method, Ce3+,Tb3+‐coactivated Si5AlON7 (Si6?zAlzOzN8?z, = 1) phosphors were successfully synthesized. The obtained phosphors exhibit high absorption and strong excitation bands in the wavelength range of 240–440 nm, matching well with the light emitting‐diode (LED) chip. The ET from Ce3+ to Tb3+ ions in Si5AlON7:Ce3+,Tb3+ has been studied and demonstrated by the luminescence spectra and decay curves. Moreover, the phosphors show tunable emissions from blue to green by tuning the relative ratio of the Ce3+ to Tb3+ ions. Thermal quenching properties of Si5AlON7:Ce3+,Tb3+ had also been investigated and the quenching temperature is ~190°C. These results show that Si5AlON7:Ce3+,Tb3+ could be a promising candidate for a single‐phased color‐tunable phosphor applied in UV‐chip pumped LEDs.  相似文献   

20.
A single‐phase multicolor emitting phosphor, Ca3Al2O6:Ce3+,Li+, was prepared by a solid‐state reaction. When the Ce3+ concentration is lower than 0.030 (molar ratio in Ca3Al2O6), yellow and greenish blue emissions can be observed under the excitation by a blue and a near UV light, respectively. The yellow‐emitting phosphor possesses an internal quantum efficiency of 89%. Additional purplish blue emission turns up when Ce3+ concentrations are higher than 0.040. Tunable emission bands are originated from Ce3+ ions on different Ca sites in Ca3Al2O6. Although the emission band of purplish blue or greenish blue overlaps the excitation band of yellow emission, and the distances between the unlike Ce3+ ions are in the range of electric dipole–dipole interaction, no energy transfer is observed. Furthermore, emission wavelengths for the yellow, greenish blue, and purplish blue emission show little change upon increasing Ce3+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号