首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
High-efficient Ce3+/Tb3+ co-doped Ba3Y2B6O15 phosphors with multi color-emitting were firstly prepared, and their structural and luminescent properties were studied by XRD Rietveld refinement, emission/excitation spectra, fluorescence lifetimes as well as temperature-variable emission spectra. Upon 365?nm excitation, the characteristic blue Ce3+ band along with green Tb3+ peaks were simultaneously found in the emission spectra. Moreover, by increasing concentration of Tb3+, a blue-to-green tunable emitting color could be realized by effective Ce3+→Tb3+ energy transfer. Furthermore, all Ba3Y2B6O15: Ce3+, Tb3+ phosphors exhibit high internal quantum efficiency of ~?90%, while the temperature-variable emission spectra reveal that the phosphors possess impressive color stability as well as good thermal stability (T50 =?~?120?°C). The results indicate that these efficient color-tuning Ba3Y2B6O15: Ce3+, Tb3+ might be candidate as converted phosphor for UV-excited light-emitting diodes.  相似文献   

2.
《Ceramics International》2016,42(15):16659-16665
In this paper, a series of Ce3+ doped Sr2MgAl22O36 (SMA) phosphors have been prepared by high temperature solid-state reaction method. The phase structure of prepared samples was checked by the powder X-ray diffraction (XRD). The morphology of the samples was inspected using a field-emission scanning electron microscope (SEM). Under different UV radiation, this phosphor exhibits different emission bands due to the Ce3+ ions located at different lattice sites. The corresponding luminescence and energy transfer mechanisms have been proposed in detail. The phosphor exhibits different concentration quenching mechanisms because the Ce3+ ions substitute two different crystallographic sites in the host. Moreover, the temperature dependent emission properties of SMA:Ce3+ were conducted from 30 °C to 200 °C, as much as 72.96% of the room-temperature emission intensity is retained at 150 °C. The SMA:Ce3+ phosphor exhibits bright blue emission with CIE coordinates (x=0.16, y=0.12) under UV excitation. The results indicate that SMA:Ce3+ phosphor has great potential applications in UV-pumped light emitting diodes.  相似文献   

3.
A series of red-emitting phosphors Eu3+-doped Sr3Y(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Y(PO4)3:Eu3+ phosphors exhibit peaks associated with the 5D0  7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The integral intensity of the emission spectra of Sr3Y0.94(PO4)3:0.06Eu3+ phosphors excited at 392 nm is about 3.4 times higher than that of Y2O3:Eu3+ commercial red phosphor. The Commission Internationale de l’Eclairage chromaticity coordinates, the quantum efficiencies and decay times of the phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Y(PO4)3 phosphors are promising red-emitting phosphors pumped by near-UV light.  相似文献   

4.
In this study, Sr2+, Ca2+, Zn2+, and Mg2+ ions act to tune the emission band to the blue-cyan region in BaxSryB2O5:Ce3+ (BSBO), BaxCazB2O5:Ce3+ (BCBO), BaxZnuB2O5:Ce3+ (BZBO), and BaxMgvB2O5:Ce3+ (BMBO) phosphors. A red shift occurs with the increase of Sr2+, Ca2+, Zn2+, and Mg2+ concentration, and a blue shift occurs when the concentrations of Sr2+, Ca2+, Zn2+, and Mg2+ exceed the critical value. The emission color can be tuned from deep blue (0.15, 0.12) to cyan (0.16, 0.27) upon 365 nm UV lamp excitation due to the crystal field splitting and centroid shifts. The excitation band shift to long wavelength by introducing ions, so that the synthesized phosphor can be better matched with the n-UV chip. The emission intensity slowly decreases with the temperature increasing. Therefore, the BMBO:Ce3+, BZBO:Ce3+, BCBO:Ce3+, and BSBO:Ce3+ phosphors with relatively good thermal stability were synthesized, which could have potential applications in the n-UV white LEDs.  相似文献   

5.
《Ceramics International》2016,42(15):16626-16632
A series of Ce3+ doped and Ce3+/Mn2+ co-doped calcium zirconium silicate CaZrSi2O7 (CZS) phosphors have been synthesized via conventional high temperature solid state reactions. The luminescence properties, energy transfer between Ce3+ and Mn2+ have been investigated systematically. Under 320 nm excitation, the phosphor CZS: 0.05Ce3+ exhibit strong blue emission ranging from 330 nm to 500 nm, attributed to the spin-allowed 5d-4f transitions of Ce3+ ions. There are two different emission centers of Ce3+ ions, Ce3+(I) and Ce3+(II). The emission spectra of Ce3+, Mn2+ co-doped phosphors shows a broad emission around 550 nm corresponding to the 4T1(4G)-6A1(6S) spin-forbidden transition of Mn2+. The energy transfer between Ce3+ and Mn2+ is detected and the transfer efficiency of Ce3+(II) to Mn2+ is faster than that of Ce3+(I) to Mn2+. The resonant type is identified via dipole-dipole mechanism. Additionally, a blue-shift emission of Ce3+ and a red-shift emission of Mn2+ have been observed following the increase of Mn2+ content in relation to the energy transfer. Thermal quenching has been investigated and the emission spectra show a blue-shift with the temperature increases, which have been discussed in details. CZS: 0.05Ce3+, yMn2+ phosphors can be tuned from blue to white and even to yellow by adjusting the Mn2+ content. All the results indicate that CZS: Ce3+, Mn2+ phosphor have a potential application for near-UV LEDs.  相似文献   

6.
《Ceramics International》2015,41(4):5525-5530
A series of single-phase Eu3+, Tb3+, Bi3+ co-doped LaPO4 phosphors were synthesized by solid-state reaction at 800 °C. Crystal structures of the phosphors were investigated by X-ray diffraction (XRD). A monoclinic phase was confirmed. The excitation (PLE) and emission (PL) spectra showed that the phosphors could emit red light centered at 591 nm under the 392 nm excitation, which is in good agreement with the emission wavelength from near-ultraviolet (n-UV) LED chip (370–410 nm). The results of PLE and PL indicated that the co-doped Tb3+ and Bi3+could enhance emission of Eu3+ and the fluorescent intensities of the phosphors excited at 392 nm could reach to a maximum value when the doping molar concentration of Tb3+ and Bi3+ is about 2.0% and 2.0%, respectively. The co-doping Tb3+ and Bi3+ ions can strengthen the absorption of near UV region. They can also be efficient to sensitize the emission of Eu3+, indicating that the energy transfer occurs from Tb3+ and Bi3+ to Eu3+ ions. From further investigation it can be found that co-doping Tb3+ and Bi3+ ions can also induce excitation energy reassignment between 5D07F1 and 5D07F2 in these phosphors, and result in more energy assignment to 5D07F2 emission in LaPO4:Eu3+, Tb3+, Bi3+. Our research results displayed that La0.94PO4:Eu3+0.02, Tb3+0.02, Bi3+0.02 could be a new one and could provide a potential red-emitting phosphor for UV-based white LED.  相似文献   

7.
《Ceramics International》2015,41(7):8988-8995
A series of white-light-emitting phosphors of single-phase Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ were synthesized by conventional solid-state reaction. The crystal structure of the host was characterized by X-ray diffraction and investigated by Rietveld refinement. Photoluminescence properties were studied in detail. The energy transfer from Ce3+ to Tb3+ in Ba2Mg(BO3)2 host was investigated and demonstrated to be a resonant type via a quadrupole–quadrupole mechanism. White light with wavelength tunable was realized by coupling the emission bands peaking at 417, 543 and 626 nm attributed to Ce3+, Tb3+ and Eu2+, respectively. By properly tuning the relative composition of Ce3+(Na+)/Tb3+/Eu2+, optimized Commission Internationale de l׳Eclairage (CIE) chromaticity coordinates (0.363, 0.295), high color rendering index (CRI) 90 and low correlated color temperature (CCT) 3793 K were obtained from the phosphor of Ba1.90Ce0.04Na0.04Eu0.02Mg0.94Tb0.06(BO3)2 upon the excitation of 296 nm UV radiation. These results indicate that Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor has a potential application as an UV radiation down-converting phosphor in white-light-emitting diodes.  相似文献   

8.
《Ceramics International》2016,42(5):6115-6120
Ce3+ and Tb3+ singly doped and co-doped GdAl3(BO3)4 phosphors were synthesized by solid state reaction. The crystal structure, the luminescent properties, the lifetimes and the temperature-dependent luminescence characteristic of the phosphors were investigated. Through an effective energy transfer, the emission spectra of GdAl3(BO3)4:Ce3+, Tb3+ phosphor contains both a broad band in the range of 330–400 nm originated from Ce3+ ions and a series of sharp peaks at 484, 541, 583, and 623 nm due to Tb3+ ions. The energy transfer from Ce3+ to Tb3+ in GdAl3(BO3)4 host is demonstrated to be phonon assisted nonradiative energy transfer via a dipole–dipole interaction.  相似文献   

9.
《Ceramics International》2016,42(9):11099-11103
Tb3+ions activated Ba4La6O(SiO4)6 (BLSO:Tb3+) phosphors were synthesized by a citrate sol-gel method. The X-ray diffraction pattern confirmed their oxyapatite structure. The field-emission scanning electron microscope image established that the BLSO:Tb3+phosphor particles were closely-packed and acquired irregular shapes. The photoluminescence (PL) excitation spectra of BLSO:Tb3+phosphors showed intense f–d transitions along with low intense peaks corresponding to the f–f transitions of Tb3+ions in the lower energy region. The PL emission spectra displayed the characteristic emission bands of Tb3+ions, and the optimized concentrations were found to be at 1 and 6 mol% for blue and green emission peaks, respectively. The cathodoluminescece (CL) spectra exhibited a similar behavior that was observed in the PL spectra except the intensity variations in the blue and green regions. The CL spectra of the BLSO:6 mol% Tb3+phosphor unveiled accelerating voltage induced luminescent properties.  相似文献   

10.
《Ceramics International》2017,43(11):8163-8170
(Tb1-xCex)3Al5O12 yellow phosphors (0≤x≤0.05) were calcined from their coprecipitated carbonate precursors, and the effects of the temperature and atmosphere (air and H2) of calcination on the sequence of phase evolution and the characteristics of the powders were investigated in detail. The activation energy for the crystallite growth during calcination was estimated to be ~39 kJ/mol. The powder calcined at 1000 °C showed good reactivity and was sintered into a ceramic plate of ~97% dense (average grain size: ~1.3 µm) in a H2/Ar gas mixture at the relatively low temperature of 1500 °C. The phosphors simultaneously exhibit the 4f8→4f75d1, 7F65D3 and 7F65D4 excitations of Tb3+ and the 4f1→5d1 excitation of Ce3+ when monitoring the yellow emission of Ce3+ at 560 nm, suggesting the presence of efficient Tb3+→Ce3+ energy migration. The optimal Ce3+ content for luminescence was found to be x=0.015 and 0.01 under the direct excitation of Ce3+ and through Tb3+→Ce3+ energy transfer, respectively, and concentration quenching of luminescence was analyzed to be resulted from exchange interaction. Luminescence features of the phosphors, including excitation, emission, quantum yield, fluorescence lifetime, color coordinates and color temperature, were thoroughly investigated against the processing temperature and Ce3+ content, with an in-depth discussion on the process of energy transfer among the optically active Tb3+ and Ce3+ ions. The materials may find application in blue-light excited white LEDs.  相似文献   

11.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

12.
《Ceramics International》2016,42(15):16579-16583
Tb3+-Sm3+ co-doped Sr9Gd(PO4)5(SiO4)F2 (SGPSF) phosphors were prepared through a solid-state reaction, and their luminescence properties as well as energy transfer mechanism have been investigated in detail. The SGPSF:Tb3+, Sm3+ phosphors system could be efficiently excited at wavelengths ranging from 200 to 500 nm, which is well matched with the spectra of near ultraviolet chips. The emission of SGPSF:Tb3+, Sm3+ phosphor covers the entire visible region with sharp peaks in the blue, green, and red regions. The emission color of SGPSF:Tb3+, Sm3+ could be adjusted from green (0.275, 0.378) to red (0.519, 0.295) by controlling the doping content of Sm3+/Tb3+.  相似文献   

13.
《Ceramics International》2016,42(6):6891-6898
A series of single-phase white-light-emitting phosphors, Eu2+-activated Ba3GdNa(PO4)3F phosphors were synthesized by solid-state reactions. The crystal structure of Ba3GdNa(PO4)3F was been identified by Rietveld refinement of X-ray diffraction pattern. The Eu2+-activated Ba3GdNa(PO4)3F phosphors exhibit broad excitation spectra from 250 to 420 nm, which matched well with the n-UV LED chips. Under the excitation of 365 nm, the emission spectrum almost covered the entire visible region including two emission bands peaked at 472 nm and 640 nm. Three different Eu2+ emission centers in Ba3GdNa(PO4)3F:Eu2+ phosphor were confirmed by their fluorescence decay lifetimes. The optimal concentration of Eu2+ in Ba3GdNa(PO4)3F:xEu2+ was 3 mol% and the corresponding concentration quenching mechanism was verified to be exchange coupling interaction. Furthermore, the white light-emitting diode fabricated with Ba3GdNa(PO4)3F:0.05Eu2+ phosphor and a 370 nm UV chip has a CIE of (0.3267, 0.2976) with a color-rendering index of 78.4 at the CCT of 5287 K.  相似文献   

14.
《Ceramics International》2015,41(7):8801-8808
Gd2O3:Dy3+ Al3+ phosphors is synthesised by a wet-chemical method for various concentrations of Al3+ ion. X-ray diffraction, photoluminescence and impedance spectroscopy are used to understand the physio-chemical properties of the phosphors. The emission spectra of Dy3+ ion exhibit transition peaks centred at 572 nm (yellow), 486 nm (blue) and 669 nm (red). Energy transfer from Gd3+ to Dy3+ is also verified by exciting the phosphors at 274 nm. Some of the Dy3+ ions occupy both C2 and S6 site of Gd3+ ion in Gd2O3 matrix. It is also revealed that the enhancement of Dy3+ emission is strongly correlated to the surface morphology of the phosphors. Introducing Al3+ ions in Gd2O3:Dy3+ phosphor affect the emission properties of Dy3+ ions and its influence is explored at various concentration of Al3+ ions. The energy level diagram is presented to explain the cross-relaxation process among Dy3+ ions and the energy transfer from Gd3+ to Dy3+ ion.  相似文献   

15.
Optical properties of samarium-doped strontium orthosilicate for near ultra-violet excitation are studied. Sr2SiO4:Sm3+ phosphor is synthesized by using the solid-state reaction method. The structure and physical properties of the phosphor are characterized by using X-ray diffractometer, scanning electron microscope, UV–visible spectrophotometer, high-resolution secondary ion mass spectrometer, and X-ray photoelectron spectrometer. Optical properties are studied by taking excitation and emission spectra. A strong red-orange luminescence corresponding to 4G5/2  6H7/2 transition of Sm3+ for near ultra-violet excitation is observed. It is found that Sr2SiO4:Sm3+ is a red-orange emitting phosphor and has higher efficiency for the operation with near ultra-violet excitation.  相似文献   

16.
The trivalent terbium (Tb3+) ions activated CaGd4O7 (CG) phosphors were synthesized by a sol–gel method. The characterizations were performed after the samples annealed at 1500 °C. The structural and morphological properties were analyzed from the X-ray diffraction patterns and scanning electron microscope images. The photoluminescence excitation spectra showed a broad-band between the wavelengths 250 and 300 nm, which were overlapped with the Gd3+ excitation bands. The photoluminescence spectra exhibited efficient green emission due to the sensitization effect of Gd3+ ions on the Tb3+ ions when exciting with the Gd3+ wavelength at 278 nm. In order to analyze the influence of Tb3+ concentration on the luminescence behavior of Tb3+ ions in the CG host lattice, the decay curves were measured. The temperature-dependent luminescence measurements were done to identify the thermal stability of CG:Tb3+ phosphors at elevated temperatures. The cathodoluminescent spectra also showed a similar behavior to that observed in PL spectra. The CIE chromaticity coordinates as a function of Tb3+ concentration were calculated and all the obtained chromaticity coordinates have been placed in the green spectral region.  相似文献   

17.
《Ceramics International》2017,43(15):12044-12056
Perovskite type titanate phosphors Sr0.97−xDy0.03LixTi1−xNbxO3, Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 and Sr0.87−yDy0.03EuyLi0.1Ti0.9Nb0.1O3 were prepared by conventional solid state method. Herein, white light emission from Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 phosphors and the lowering of its color temperature through codoping with Eu3+ ions are reported. Raman measurements have shown that the incorporation of dopants alters the vibrational properties of these phosphors significantly, indicating the reduction of the local symmetry in the crystal lattice. The addition of LiNbO3 in SrTiO3:Dy3+ phosphor enhances the luminescence intensity and the yellow to blue ratio resulting in emission of high quality white light with color coordinates corresponding to that of standard white. Life time measurements and data fits of Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 phosphors revealed the biexponential behaviour of luminescence decay profiles. From Judd-Ofelt analysis it is found that the intensity parameter Ω2 increases with Dy3+ concentration and a quantum efficiency of 90.4% was obtained for optimum concentration. In the case of Dy3+ and Eu3+ codoped phosphors, the color coordinates are found to be sensitive to the Eu3+ concentration and the highest energy transfer efficiency of 92% was obtained for the phosphor doped with 10 mol% Eu3+. The emission color changes from cold white to reddish orange when the wavelength of excitation alters from 452 to 388 nm, since the energy transfer mechanism alone take place under 452 nm excitation and both direct absorption and the energy transfer mechanism occurs under 388 nm excitation.  相似文献   

18.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

19.
This work presents the ultraviolet–visible spectroscopic properties of Ba3Y2(BO3)4:Ce3+,Tb3+ phosphors prepared by a high‐temperature solid‐state reaction. Under ultraviolet light excitation, tunable emission from the blue to yellowish‐green region was obtained by changing the doping concentration of Tb3+ when the content of Ce3+ is fixed. The efficient energy transfer process between Ce3+ and Tb3+ ions was observed and confirmed in terms of corresponding excitation and emission spectra. In addition, the energy transfer mechanism between Ce3+ and Tb3+ was proved to be dipole–dipole interaction in Ba3Y2(BO3)4:Ce3+,Tb3+ phosphor. By utilizing the principle of energy transfer and appropriate tuning of Ce3+/Tb3+ contents, Ba3Y(BO3)4:Ce3+,Tb3+ phosphors can have potential application as an UV‐convertible phosphor for near‐UV excited white light‐emitting diodes.  相似文献   

20.
《Ceramics International》2016,42(5):6094-6099
Dy3+/Tb3+ codoped CaMoO4 phosphors were synthesized by a simple sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. The energy transfer process of Dy3+→Tb3+ was confirmed by excitation and emission spectra and luminescence decay curves, and the energy transfer efficiency was also estimated. The results verified that the efficient emission of Tb3+ was sensitized by Dy3+ under the excitation of 354 nm, realizing tunable emission in CaMoO4 phosphors. Furthermore, optical thermometry was achieved by the fluorescence intensity ratio between Tb3+: 5D47F5 (~546 nm) and Dy3+: 4F9/26H13/2 (~575 nm). It is expected that the investigated CaMoO4 nanograins doped with Dy3+/Tb3+ have prospective applications in display technology and optical thermometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号