首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
mPE弹性体增韧改性PP力学性能的研究   总被引:6,自引:0,他引:6  
用茂金属聚乙烯(mPE)弹性体代替传统的弹性体,对聚丙烯(PP)的增韧改性进行了研究。探讨了橡塑比和mPE的牌号对共混物力学性能的影响;并对不同的弹性体的增韧效果做了对比研究。结果表明,与传统的弹性体相比,mPE增韧改性的PP显示出卓越的低温冲击性能。  相似文献   

2.
茂金属聚乙烯弹性体mPE增韧改性聚丙烯的研究   总被引:12,自引:0,他引:12  
本研究工作用茂金属聚乙烯弹性体mPE代替代表的弹性体,对PP的增专改性进行了研究,探讨了共混工艺参数和橡逆比对共混物力学性能的影响;并对不同的弹性体的增韧效果做了对比研究,结果表明,与传统的弹性体相比,mPE增韧改性的PP显示出卓越的低温性能和加工性能;另外用扫描电子显微镜(SEM)对共混物相态结构及断裂形貌进行了分析研究。  相似文献   

3.
mPE弹性体/PP共混物的流变行为与力学性能   总被引:5,自引:0,他引:5  
用茂金属聚乙烯弹性体(mPE)代替传统的弹性体,对聚丙烯(PP)进行增韧改性,绘制了不同配比mPE/PP共混物熔体的流变曲线,讨论了共混物的组成,切应力和剪切速率以及温度对熔体流变行为,熔体粘度的影响。测定了共混物熔全的非牛顿指数,熔体质量流动速率及力学性能,为mPE共混改性PP提供了理论依据。结果表明,mPE适用于PP的增韧改性,增韧效果取决于共混物中mPE的用量,当mPE质量分数达到25%-40%时,共混材料既有较高的拉伸强度和韧性,又有较好的加工性能,mPE/PP共混物熔体的假塑性流动随mPE用量的增加向更高切应力或更高剪切速率方向移动。  相似文献   

4.
茂金属聚乙烯弹性体和三元乙丙橡胶增韧聚丙烯的比较   总被引:9,自引:1,他引:8  
用茂金属聚乙烯弹性体(mPE)代替三元乙丙橡胶(EPDM)对聚丙烯(PP)增韧改性并进行了比较。结果表明,mPE共聚物中的辛烯质量分数越高,其中对PP的增韧效果越好;随着共混物中弹性体质量分数的增加,共混物的拉伸强度和弹性模量降低,扯断伸长率增大。PP/mPE与PP/EPDM增韧体系相比,二者的拉伸强度差别不大,但PP/mPE的弹性模量和扯断伸长率稍低;与EPDM相比,mPE对PP具有较好的增韧效果,含有质量分数40% mPE的共混物试样在-30℃下的缺口冲击强度已超过纯PP的20倍,约是相同弹性体质量分数PP/EPDM的近9倍。另外,PP/mPE还具有较低的拉伸永久变形、压缩永久变形和蠕变变形。  相似文献   

5.
介绍了聚丙烯(PP)增韧改性机理,重点综述了当前研究较多的橡胶/弹性体对PP的增韧改性方法及未来PP增韧改性的主要研究方向。  相似文献   

6.
从橡胶、弹性体对聚丙烯(PP)进行增韧的机理出发,介绍了当前国内外研究较多的PP/橡胶与PP/弹性体二元共混物及其三元共混物。综述了采用具有不同结构的橡胶与弹性体、相容剂增容共混物以及无机材料协同弹性体对PP进行增韧改性的研究进展,同时也从共混加工工艺上对橡胶与弹性体增韧PP进行了阐述,分析了复合材料的综合性能,并对今后国内外增韧改性PP提出了展望。  相似文献   

7.
简述了聚丙烯(PP)成核剂的分类及其增韧改性机理,针对近年来α成核剂/弹性体、β成核剂/弹性体、复配型成核剂/弹性体协同改性PP的研究成果进行了综述,并展望成核剂/弹性体改性PP的研究前景。  相似文献   

8.
用聚烯烃弹性体(POE)代替传统的弹性体,对聚丙烯(PP)增韧改性。探讨了基体树脂、POE和HDPE的用量对共混体系力学性能和流动性的影响。并通过扫描电镜观察冲击断面,研究共混物的形态结构与材料性能的关系。结果表明,POE能大幅度的改善材料的冲击韧性,HDPE具有协同增韧效应,制得的PP改性材料具有高韧性和高流动性。  相似文献   

9.
聚丙烯共混增韧研究进展   总被引:4,自引:1,他引:4  
从塑料增韧聚丙烯(PP)体系,橡胶或热塑性弹性体增韧PP体系、PP/弹性体/塑料三元共混体系以及无机刚性粒子增韧PP体系4个方面详细论述了国内外PP共混增韧改性的研究进展。采用塑料类作为改性剂增专心PP,虽可增韧,但是由于体系的不相容性,往往要大量使用改性剂或添加相容剂。使用橡胶或者热塑性弹性体与PP共混增韧效果最为明显,但由于随着弹性体用量的增加,体系在冲击强度大幅度提高的同时也出现了刚性等性能的损失。PP弹性体/塑料三元共混体系可均衡改善力学性能及降低成本。此外,还就近年发展起来的无机刚性粒子增韧PP的研究工作进展和机理研究情况作了介绍。  相似文献   

10.
聚丙烯改性新进展   总被引:3,自引:0,他引:3  
综述了橡胶或弹性体增韧PP及其机理,刚性粒子增韧及其机理和橡胶/刚性粒子/PP三元复合增韧体系,简要介绍了PP改性技术的最新进展以及PP综合改性的新思路。  相似文献   

11.
Ternary blends of polypropylene (PP), ethylene–octene copolymer (mPE), and high‐density polyethylene (HDPE) were prepared based on the phase behavior and physical properties of mPE/HDPE binary blends, and the results were interpreted in terms of morphology and both rheological and mechanical properties of the ternary blends as well as the binary blends. It was found that when mPE encapsulates HDPE in the PP matrix, compared to the encapsulation of mPE by HDPE, better blend properties were obtained, presumably because of the compatibilizing effect of mPE between PP and HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 179–188, 2004  相似文献   

12.
Polypropylene (PP)/metallocene‐catalyzed polyethylene elastomer (mPE) blends were prepared in a twin‐screw extruder. The melting behavior, crystallization behavior, and isothermal crystallization kinetics of the blends were studied with differential scanning calorimetry. The results showed that PP and mPE were partially miscible and that the addition of mPE shifted the melting peak of PP to a lower temperature but the crystallization temperature to a higher temperature, demonstrating a dilution effect of mPE on PP. The isothermal crystallization kinetics of the blends were described with the Avrami equation. The values of the Avrami exponent indicated that the nucleation mechanism of the blends was heterogeneous, the growth of spherulites was almost three‐dimensional, and the crystallization mechanism of PP was not affected much by mPE. At the same time, the Avrami exponents of the blends were higher than that of pure PP, and this showed that the addition of mPE helped PP to form more perfect spherulites. The crystallization rate of PP was increased by mPE because the dilution effect of mPE on PP increased the mobility of PP chains. The crystallization activation energy was estimated with the Arrhenius equation, and the nucleation constant was determined by the Hoffman–Lauritzen theory. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Polyolefin binary and ternary blends were prepared from polypropylene (PP), an ethylene–α‐olefin copolymer (mPE), and high‐density polyethylene (HDPE) on the basis of the viscosity ratio of the dispersed phase to the continuous phase. In PP/mPE/HDPE blends, fibrils were observed when the dispersed‐phase (mPE/HDPE) viscosity was less than that of PP, or when the viscosity of mPE was less than that of PP, although the viscosity of mPE/HDPE was greater than that of PP. The notched impact strength and mechanical properties such as the yield strength, flexural modulus, and hardness of PP/mPE binary blends further increased with the addition of HDPE according to the type of HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4027–4036, 2004  相似文献   

14.
Crystallization behaviors, spherulite growth and structure, and the crystallization kinetics of polypropylene (PP)/ethylene‐α‐olefln copolymer (mPE)/high‐density polyethylene (HDPE) ternary blends and of mPE/HDPE binary blends have been studied using polarizing optical micrography (POM) and differential scanning calorimetry (DSC). In mPE/HDPE blends, large pendant groups of mPE disturbed spherulite growth of HDPE, leading to a different crystallite morphology and isothermal kinetics. Non‐isothermal properties, morphology, and isothermal crystallization kinetics of PP in ternary blends were significantly influenced by the composition and crystallization behavior of the mPE/HDPE binary blends as well as the crystallization condition. Polym. Eng. Sci. 44:1858–1865, 2004. © 2004 Society of Plastics Engineers.  相似文献   

15.
玻纤增强茂金属聚乙烯弹性体改性聚丙烯的研究   总被引:5,自引:2,他引:3  
采用短玻纤(SGF)对PP/茂金属聚乙烯弹性体(mPE)共混物进行增强,制得PP/mPE/SGF三元共混复合材料,分别对PP/mPE二元共混物和PP/mPE/SGF三元共混复合材料的力学性能进行了研究。探讨了弹性体用量、SGF的用量和表面处理对共混物和复合材料拉伸性能、低温冲击韧性和蠕变性能的影响。结果表明,PP/mPE/SGF三元共混复合材料同时具有良好的刚性和韧性。  相似文献   

16.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

17.
茂金属聚乙烯的共混改性研究   总被引:3,自引:2,他引:3  
王港  陈晓媛  黄锐 《塑料科技》2002,(3):1-3,11
对三种茂金属聚乙烯 (mPE)做了DSC研究。将茂金属聚乙烯同传统聚烯烃 (HDPE ,PP ,LDPE)进行了共混研究 ,结果表明mPE的加入提高了LDPE的拉伸性能 ,使HDPE和PP的拉伸强度下降 ,但mPE含量在 2 0 %~2 5 %的范围内 ,拉伸强度和断裂伸长率下降很小。mPE的加入大大提高了PP和HDPE的冲击性能。对mPE/LDPE共混物吹膜进行了研究 ,测定了共混物的熔体流动速率 ,探索了吹膜的工艺条件 ,以及薄膜的拉伸性能、撕裂性能与共混组成比的关系。  相似文献   

18.
The nonisothermal crystallization, melting behavior, and morphology of blends of polypropylene (PP) and a metallocene‐catalyzed polyethylene (mPE) elastomer were studied with differential scanning calorimetry, scanning electron microscopy, polarized optical microscopy, and X‐ray diffraction. The results showed that PP and mPE were partially miscible and could form some cocrystallization, although the extent was very small. A modified Avrami analysis and the Mo method were used to analyze the nonisothermal crystallization kinetics of the blends. The values of the Avrami exponent indicated that the crystallization nucleation of the blends was homogeneous, the growth of the spherulites was three‐dimensional, and the crystallization mechanism of PP was not affected by mPE. The crystallization activation energy was estimated with the Kissinger method. Interesting results were obtained with the modified Avrami analysis and Mo and Kissinger methods, and the conclusions were in good agreement. The addition of less mPE increased the overall crystallization rate of PP. The relationship between the composition and morphology of the blends was examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1203–1210, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号