首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
王玥  郑晓洪  陶天一  刘秀庆  李丽  孙峙 《化工进展》2022,41(8):4530-4543
随着新能源汽车市场的蓬勃发展,锂离子电池作为新能源汽车的关键部件,面临着关键金属资源尤其是锂资源供给不足的风险,回收废锂离子电池中所含的二次锂资源将成为解决锂资源供需问题、推动行业可持续发展的重要途经。因此为实现废锂离子电池中锂元素的高效提取,分步或优先提取的选择性提锂工艺备受研究者们关注。本文介绍了火法、湿法、机械化学法和电化学法四种当前主流的选择性提锂工艺,在阐述其基础反应机理的基础上,总结归纳了各工艺最新的研究成果,并从提取过程中的工艺能耗、物耗、回收率、选择性、环境影响等多个角度对各工艺的优势和不足进行了深入分析。最后,对废锂离子电池中有价金属资源化回收的发展趋势及前景进行了展望,为未来研发更加清洁高效的回收工艺提供参考。  相似文献   

2.
废锂离子电池中不仅富含我国高对外依存度的关键金属,还含有重金属、有机污染物等有毒有害物质,具有资源与环境的双重属性。推进其高效循环利用是保障新能源汽车等战略新兴产业可持续发展的关键。锂离子电池组成结构复杂,有机物成分变化大、种类多,常规的火法和湿法冶金过程容易产生二次环境危害,不利于资源的清洁循环利用。热处理作为保障废锂离子电池中有价金属资源有效回收的重要技术,近年来受到了行业的广泛关注。热处理技术具有二次污染小、设备简单、过程易放大、经济性高等诸多优势。结合热处理技术对废锂离子电池回收中的污染物进行源头治理,既能实现清洁生产,也能强化后续深度处理。本工作立足于行业现状和战略需求,重点讨论了废锂离子电池预处理中的污染物产生、迁移和转化规律,对比总结了热处理在杂质去除和污染防控等方面的技术优势。同时,对废锂离子电池的热处理工艺进行了系统分类,总结了不同热处理条件下的物质转化规律。  相似文献   

3.
随着新能源汽车的迅速发展,锂离子电池(LiBs)需求不断增加,大量废旧LiBs对环境造成污染,同时面临着锂资源供给不足的风险,回收废LiBs中稀有金属锂成为目前研究的热点。有效的电池回收不仅可以缓解资源短缺、实现资源利用,更重要的是可以减少环境污染,推动行业可持续发展。为实现废旧LiBs中锂金属的高效回收,通过优先提取及分步分离的方式回收锂工艺受到研究者的广泛关注。本文对废旧LiBs回收现状及方法进行了阐述,讨论了火法冶金、湿法冶金、生物冶金及电化学法在选择性回收锂工艺上的最新研究进展,详细分析了电极-电场驱动与膜-电渗析技术在选择性回收锂领域的技术优势,同时归纳了各回收工艺的优缺点,并结合经济效益和环境影响对锂回收所面临的问题进行了总结分析。最后,对LiBs回收利用面临的挑战和局限性进行总结,并对未来LiBs回收的发展趋势进行了展望,为研发更加节能环保高效的回收工艺提供参考。  相似文献   

4.
新能源汽车产业快速发展带动锂离子电池消费不断增加,直接导致用于生产电池材料的钴、锂、镍等能源金属严重短缺。未来退役锂离子电池产量将呈指数增加,其资源化回收受到广泛关注。资源化回收不仅可以缓解电池材料紧缺现状,还解决了废旧电池堆积而引起的危害。本文针对退役锂离子电池放电预处理和湿法、火法两种资源化回收工艺最新研究现状进行了综述,并就未来发展趋势进行了讨论。在现有火法回收工艺基础上提出一种利用高温熔融冶炼渣处理废旧锂离子电池回收有价金属的新方法,通过添加适宜的氯化剂将渣中锂转化为高温易挥发的LiCl,实现从烟尘中富集并高效回收锂的新思路,解决了传统火法工艺需从渣中对锂进行二次提取的技术缺陷。  相似文献   

5.
废旧锂离子电池回收制备钴酸锂的研究进展   总被引:1,自引:0,他引:1  
介绍了废旧锂离子电池进行回收与资源化的意义、现状和研究进展,回顾了煅烧法、直接分离法、湿法冶金等回收工艺。系统地介绍了废旧锂离子电池回收制备可被再利用的锂钴氧正极材料技术,比较了各种方法在制备过程中的优缺点,并提出了废旧锂离子电池回收与资源化再生工艺存在的问题与发展方向。  相似文献   

6.
近年来,随着锂离子电池的广泛应用,产生了大批量退役锂离子电池.退役锂离子电池含有有毒物质和贵重金属,若不进行有效处理会造成环境污染和资源浪费,因此研究退役锂离子电池的回收工艺具有重要的意义.综述了退役锂离子电池湿法冶金回收技术的研究进展,包括退役锂离子电池的预处理、浸出、萃取分离和再生等方法,并对锂离子电池回收工艺的发展进行了展望和建议.  相似文献   

7.
随着锂离子电池产业发展,废旧锂离子电池所带来的环境及资源问题日益突出,废旧锂离子电池中有价金属的资源化、无害化处理逐渐成为国内外的研究热点。为实现废旧锂离子电池中钴、锂资源绿色高效回收,本文介绍了废旧锂离子电池中有价金属回收的研究现状,主要包括预处理、正极材料处理、浸出液回收等环节,着重评述了各环节中新方法及工艺,简要对比了各方法及工艺的优缺点。现阶段研究主要集中于湿法浸出回收工艺,酸-还原剂为典型浸出模型,而动力学控制、离子转移路径等机理方面欠缺。最后展望了今后废旧锂离子电池中钴、锂资源回收研究方向,下一步主要是朝着有机酸浸-沉淀获得优质产品方向发展,需着重强化浸出效率、提升沉淀指标、简化工艺条件,以利于产业化推广。  相似文献   

8.
刘子潇  张家靓  杨成  陈永强  王成彦 《化工进展》2021,40(10):5325-5336
废旧锂离子电池的回收是近年来资源回收研究领域的热点,但相关回收体系的理论基础研究仍然较为薄弱。其中在热力学研究方面,研究者们大多仍以经典冶金物理化学理论为指导,并借助E-pH图、优势区域图等方法开展研究。本文对该领域已有的较为典型的热力学研究进行综述,详细阐述了热力学研究对废旧锂离子电池常规回收工艺的指导作用以及对三元正极废料选择性提锂、磷酸铁锂正极废料选择性提锂和失效电池材料再生修复等新技术开发的启发性作用。同时,基于对现有锂离子电池回收体系热力学研究的总结和评述,指出了未来锂离子电池回收体系热力学研究亟待解决的关键问题和发展方向。  相似文献   

9.
湿法冶金回收废旧锂电池正极材料的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
全球电动汽车和智能手机市场的逐年扩大,直接促进了全球锂离子电池市场规模的增加,锂离子电池的回收与再利用具有重要的经济和社会价值。本文综述了废旧锂离子电池正极材料的主要回收方法,包括梯次利用法、火法冶金法、湿法冶金法和直接回收法,重点综述了湿法冶金法的工艺流程和重要步骤,介绍了机械处理与正极材料浸出、浸出液的回收利用、有价值金属产物的再生合成的研究进展,最后对湿法冶金综合回收废旧锂电池正极材料的未来发展进行了展望。  相似文献   

10.
在“碳达峰、碳中和”背景下,中国新能源汽车数量激增,锂离子电池大规模应用导致其报废带来的问题不容小觑,如战略金属资源的浪费,对环境、人体健康的影响等。因此,废旧锂离子电池资源再利用是十分必要的,特别是正极材料的回收。目前正极材料的回收方法主要包含火法冶金、湿法冶金、微生物冶金和低共熔溶剂浸出等,本文着重介绍了新兴的低共熔溶剂浸出法,根据氢键供体和受体的不同以及有无外场辅助将低共熔溶剂分为5类,总结了低共熔溶剂浸出法的最新进展,概述了DES浸出正极材料的还原作用,通过缩核模型解释了DES浸出的化学反应动力学原理和作用机制,同时对低共熔溶剂回收废旧电池的发展提出了面临的问题并进行了展望。该工作为低共熔溶剂浸出正极材料的进一步深入研究与规模化应用提供了可行性的指导与参考。  相似文献   

11.
锂离子电池被广泛应用于电子产品、电动汽车和大规模储能材料等多个领域。随着电动车市场的快速发展,其使用量还将显著增加,随之产生数量极大的退役锂离子电池。退役锂离子电池的回收利用可以避免环境污染和资源浪费,尤其对实现锂资源供需平衡具有重要意义。综述了退役锂离子电池中有价金属元素回收技术研究现状,探讨了该领域未来发展方向。电池安全高效拆解技术与装备、有价元素整体化回收技术、电极材料再制备工艺以及避免二次污染环境是未来退役锂离子电池循环利用领域值得关注的重点。  相似文献   

12.
随着锂离子电池在电动能源及储能领域的大量使用,废旧锂离子电池所带来的环境及资源问题日益突出。废旧锂离子电池中有价金属绿色高效的回收,在资源综合利用、节能环保及可持续发展等方面具有重大的现实意义,并逐渐成为世界各国的研究热点。综述了近年来国内外废旧锂离子电池中有价金属的回收现状,主要流程包括预处理、电极材料的溶解浸出及浸出液中有价金属的分离回收等环节,分析比较了各种回收途径的优缺点,并在此基础上对废旧锂离子电池回收工艺的发展趋势及应用前景做出了分析展望。  相似文献   

13.
随着电动汽车市场的蓬勃发展,将产生大量的废旧动力电池。考虑到有害废弃物对环境的污染以及资源的稀缺,废旧锂离子电池的回收具有重要的经济价值和现实意义。近年来正极材料(比如高价值金属钴、镍和锂等)的回收已经取得了可观的进展,但对附加值较低的负极材料(主要是石墨)的再生却鲜有提及。然而,考虑到碳材料的广泛应用,负极中高于环境丰度的锂含量,有关负极材料的回收自2016年来也引起了重视。因此,总结了锂离子电池石墨负极材料回收的研究进展,从能源、环境和资源成本等角度分析了包括直接物理回收、热处理回收、湿法回收、热处理和湿法回收相结合、萃取法和电化学法等各个回收路线的优势和不足;此外,对回收负极材料在储能和制备功能材料领域的再利用做出扼要重述。在此基础上,提出了回收锂离子电池石墨负极的挑战和未来前景,指出负极的回收应从绿色化学的理念出发,设计低能耗、环境友好的回收路线。  相似文献   

14.
In light of the increasing demand for environmental protection and energy conservation,the recovery of highly valuable metals,such as Li,Co,and Ni,from spent lithium-ion batteries (LIBs) has attracted wide-spread attention.Most conventional recycling strategies,however,suffer from a lack of lithium recycling,although they display high efficiency in the recovery of Co and Ni.In this work,we report an efficient extraction process of lithium from the spent LIBs by using a functional imidazolium ionic liquid.The extraction efficiency can be reached to 92.5% after a three-stage extraction,while the extraction effi-ciency of Ni-Co-Mn is less than 4.0%.The new process shows a high selectivity of lithium ion.FTIR spec-troscopy and ultraviolet are utilized to characterize the variations in the functional groups during extraction to reveal that the possible extraction mechanism is cation exchange.The results of this work provide an effective and sustainable strategy of lithium recycling from spent LIBs.  相似文献   

15.
Lithium‐ion battery is a mature technology that is used in various electronic devices. Nowadays, this technology is a good candidate as energy storage for electric vehicles. Therefore, much research is focused on the development of high‐density power lithium‐ion batteries. Government regulations force manufacturers to recycle the batteries for safety and health reasons but recycling could also be interesting from an economic viewpoint since cathodes in lithium‐ion batteries contain valuable metals. The electrodes in lithium‐ion batteries will evolve to provide more energy and the recycling processes will have to fit with this evolution. Leaching, bioleaching and solvent extraction are at the centre of these processes. In this paper, recent leaching and solvent extraction strategies for recovering valuable metals from spent lithium‐ion batteries are reviewed and the evolution of these processes is discussed. © 2013 Society of Chemical Industry  相似文献   

16.
张笑笑  王鸯鸯  刘媛  吴锋  李丽  陈人杰 《化工进展》2016,35(12):4026-4032
近年来,随着消费电子商品、电动车和大规模储能市场的快速发展,作为目前占据最多市场份额的锂离子电池的产量也随之快速增长,随之产生的废旧锂离子电池的数量和重量呈现出了井喷式的上涨。从其巨大的数量、环境保护和资源再生的角度来看,废旧锂离子电池都具有很高的回收价值和潜力。本文主要从实验室研究和工业应用两个角度总结了目前主要的回收处理方法和流程,重点介绍了利用废旧锂离子电池电极材料重新再生和合成新的电极材料的研究进展。目前废旧锂离子电池回收处理存在的问题主要是:电极材料的复杂多样性导致分离提纯过程困难,回收过程易产生二次污染以及回收的经济激励不足。未来的发展趋势在于结合绿色环保和低成本经济,研究高效的回收处理工艺流程。  相似文献   

17.
Today’s lithium (Li)-ion batteries have been widely adopted as the power of choice for small electronic devices through to large power systems such as hybrid electric vehicles (HEVs) or electric vehicles (EVs). However, it falls short of meeting the demands of new markets in these areas of EVs or HEVs due to insufficient energy density. Therefore, new battery systems such as Li–air batteries with high theoretical specific energy are being intensively investigated, as this technology could potentially make long-range EVs widely affordable. So far, Li–air battery technology is still in its infancy and will require significant research efforts. This review provides a comprehensive overview of the fundamentals of Li–air batteries, with an emphasis on the recent progress of various elements, such as lithium metal anode, cathode, electrolytes, and catalysts. Firstly, it covers the various types of air cathode used, such as the air cathode based on carbon, the carbon nanotube-based cathode, and the graphene-based cathode. Secondly, different types of catalysts such as metal oxide- and composite-based catalysts, carbon- and graphene-based catalysts, and precious metal alloy-based catalysts are elaborated. The challenges and recent developments on electrolytes and lithium metal anode are then summarized. Finally, a summary of future research directions in the field of lithium air batteries is provided.  相似文献   

18.
With the annual increase in the amount of lithium-ion batteries (LIBs), the development of spent LIBs recycling technology has gradually attracted attention. Graphite is one of the most critical materials for LIBs, which is listed as a key energy source by many developed countries. However, it was neglected in spent LIBs recycling, leading to pollution of the environment and waste of resources. In this paper, the latest research progress for recycling of graphite from spent LIBs was summarized. Especially, the processes of pretreatment, graphite enrichment and purification, and materials regeneration for graphite recovery are introduced in details. Finally, the problems and opportunities of graphite recycling are raised.  相似文献   

19.
Lithium-ion batteries (LIBs) possessing high energy densities are driven by the growing demands of electric vehicles (EVs) and hybrid electric vehicles (HEVs). One of the most effective strategies to improve the energy density of LIBs is to enlarge the charge cut-off voltage via a lithium salt additive for the conventional electrolyte system. Herein, lithium difluorophosphate (LIDFP) is employed to optimize and reconstruct the composition of the structure and interface for both cathode and anode, which can effectively restrain the oxidation decomposition of electrolyte as well as refrain the dissolve out of transition metals. The LiNi0.8Co0.1Mn0.1O2 (LNCM811)/graphite pouch cell with 1 wt% LIDFP in electrolyte delivers a discharge capacity retention of 91.3% at a high voltage of 4.4 V over 100 cycles, which is higher than the 82.0% of that without LIDFP additive. Additionally, the remaining capacity of LNCM811/C battery with 1 wt% LIDFP additive which is left at 60 °C for 14 days is 85.2%, and the recovery capacity is 93.3%. The LIDFP-containing electrolyte demonstrates a great application future for the LiBs operating under the high-voltage condition and high-temperature storage performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号