首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张昊  申凯  赖艳华  崔琳  董勇 《化工学报》2019,70(6):2269-2278
燃煤电厂排放的烟气中含有大量水蒸气,氯化钙溶液循环除湿技术具有较好的除湿潜力。为了研究吸湿后的氯化钙溶液的再生性能,使用Matlab软件对液滴闪蒸过程进行了数值模拟,并搭建了氯化钙溶液喷雾闪蒸试验台。考察了闪蒸压力,溶液初始温度、浓度、溶液流量等因素对氯化钙溶液再生量的影响。试验结果表明了数学模型的准确性;溶液表面蒸气压和再生压力的差值以及溶液过热度是影响再生量的关键因素;闪蒸出口水蒸气经冷凝后Cl含量不足0.2 mg/L。浓度为35%的溶液在再生温度为60℃、再生压力为10 kPa、流量为0.2 m3/h的情况下,可以实现5 kg/h以上的水分回收量。  相似文献   

2.
混合除湿盐溶液液滴闪蒸机理   总被引:4,自引:4,他引:0       下载免费PDF全文
除湿溶液再生是维持除湿过程持续进行的必备条件,其效率直接影响整个系统的性能。借鉴水滴闪蒸理论,分析了液滴闪蒸过程大小、质量以及温度变化,初步实验测试了影响闪蒸效率的因素,结果表明:压力是影响闪蒸效率的核心因素,及时去除蒸发水分才能保证闪蒸的持续进行;溶液浓度配比与闪蒸效率关联性较强;液滴初始温度对闪蒸效率影响相对较小;温度的实验测试值总体大于理论计算值,使用水滴闪蒸理论模型需进行物性修正。  相似文献   

3.
对溶液除湿的除湿器中传热传质进行了热力学分析,根据除湿塔的结构及溶液与空气的流动方式,建立除湿器的热质交换物理和数学模型,模拟计算除湿器入口空气和溶液参数对除湿器出口空气参数的影响,模拟计算中设置入口空气流量0~5kg/s,入口空气温度20~40℃,入口空气含湿量为10~30g/kg,入口溶液温度25~40℃,入口溶液浓度25%~40%,入口溶液流量1~4kg/s,得到各入口参数对出口空气含湿量和温度的影响曲线。结果表明:入口空气含湿量、入口溶液浓度和温度对出口空气含湿量影响显著;入口空气含湿量和流量对出口空气温度影响显著。对模拟结果与实验结果进行了比较,发现两者的变化趋势是相同的,最大误差为13.08%。  相似文献   

4.
建立了LiCl溶液再生过程的数学模型,通过模拟分析,得到了溶液再生量、溶液温度和溶液浓度随时间的变化规律。以平均再生量为评价指标,对LiCl溶液的再生性能进行了实验研究。分析了热源温度、溶液浓度、溶液初始温度、再生压力和冷水温度5个因素分别对溶液再生性能的影响规律。实验结果表明:溶液浓度和再生压力对溶液再生性能影响显著,冷水温度对溶液再生性能的影响最小。在设定的标准工况下,再生压力为4kPa、溶液中LiCl质量分数从28%增大到34%时,平均再生量由20.45g/(m2·s)减小至7.44g/(m2·s);再生压力从4kPa升高至10kPa时,平均再生量由15.33g/(m2·s)降低至1.92g/(m2·s)。最后,以溶液温度和溶液浓度作为对比目标参数将模拟结果和实验结果进行了对比分析,结果表明,实验值与模拟值符合较好。  相似文献   

5.
燃煤电厂湿烟气的除湿特性   总被引:1,自引:0,他引:1       下载免费PDF全文
燃煤电厂湿法脱硫后排放的烟气中含有大量水蒸气,造成大量水资源的浪费,溶液除湿工艺是水分回收技术之一。通过绝热型管式降膜除湿试验台,采用价格低廉的CaCl2溶液为除湿剂,探究了湿烟气状态下溶液浓度、溶液温度、传质面积及进口温度对除湿性能的影响,试验得到了CaCl2溶液除湿过程的传质系数,溶液除湿效率远高于清水冷凝除湿,为烟气除湿工艺的选择和性能预测提供了参考。  相似文献   

6.
太阳能叉流液体除湿空调再生热质传递稳态实验   总被引:1,自引:1,他引:0       下载免费PDF全文
高文忠  柳建华  章学来 《化工学报》2011,62(10):2747-2752
再生器是太阳能液体除湿系统的核心设备,其效率直接影响整个系统的性能。分析了再生器出口参数由进口参数和效率直接获得的可行性,并建立叉流液体再生系统,采用氯化锂为再生溶液,Celdek填料为热质交换介质,实验测试溶液和空气进出口参数对再生器全热效率和湿度效率的影响规律,并进行线性回归,结果表明:全热效率主要受溶液流量、温度以及空气流量、温度和含湿量的影响;湿度效率和溶液流量、温度、浓度以及空气流量关联性强,与其他变量关系很小;线性回归方程计算结果和实验结果误差基本在20%以内,可通过进口参数预测出口状态。  相似文献   

7.
常见液体除湿剂池内核态沸腾换热特性   总被引:3,自引:1,他引:2       下载免费PDF全文
溶液除湿剂的沸腾式再生能够降低除湿空调对室外环境的依赖性,而溶液的沸腾特性的研究对沸腾再生器的设计有重要意义。针对3种常规除湿溶液及一种配方型除湿剂的池内核态沸腾特性展开实验研究。研究发现:3种溶液的沸腾温度均随着浓度的增加而升高;3种溶液的沸腾传热系数均低于水,并随浓度的增加而降低,但是当浓度增大到极限时,溶液中有小颗粒析出,其传热系数却提高。相近传质能力条件下,溴化锂溶液与氯化钙溶液的沸腾换热性能优于氯化锂溶液;在氯化锂溶液中添加一定量的氯化钙溶液能够优化氯化锂溶液的沸腾换热性能。  相似文献   

8.
李维  韩大超  张红  马超  蓝兴旺  张雪平 《化工进展》2013,32(10):2316-2318
以活性氧化铝为吸附剂材料,选取5.5~6.5 mm及4~5 mm两种粒径的活性氧化铝对压缩空气进行除湿实验研究,为活性氧化铝在压缩空气除湿系统中的运行提供依据。结果表明:在温度120℃、压力0.2 MPa、流量40 m3/h的条件下,5.5~6.5 mm活性氧化铝的再生性能优于4~5 mm活性氧化铝;在温度120 ℃、压力0.7 MPa、流量15 m3/h的条件下,前期在1200 s时间内,两者的吸附速率都很快,后期4~5 mm粒径的活性氧化铝的吸附稳定性更好。在给定的工况条件下,5.5~6.5 mm活性氧化铝再生效果比4~5 mm活性氧化铝要好,但吸附效果不如后者。  相似文献   

9.
为了改善单一除湿盐溶液的性能,同时降低耗费成本,越来越多的学者致力于混合除湿盐溶液的研究。考虑以价格低廉但除湿效果一般的氯化钙溶液为基础溶液,添加氯化锂或溴化锂颗粒形成混合溶液来提高单一氯化钙溶液的除湿能力。测量了单一氯化钙溶液,加Li Cl/Li Br颗粒后饱和混合溶液的质量浓度,探究极限溶解度,其次对氯化钙、氯化锂不同配比混合溶液在不同温度下的黏度及表面张力进行了测量。通过溶解度的实验测量,发现已经饱和的氯化钙溶液中还可继续溶解最高达8%的Li Cl/Li Br晶体。测量得不同配比氯化锂、氯化钙混合溶液的黏度与表面张力值,通过比较发现氯化锂与氯化钙1:1的质量比下,混合溶液的黏度与表面张力均最低。  相似文献   

10.
沈子婧  殷勇高  张小松 《化工学报》2016,67(7):3004-3009
为了改善单一除湿盐溶液的性能,同时降低耗费成本,越来越多的学者致力于混合除湿盐溶液的研究。考虑以价格低廉但除湿效果一般的氯化钙溶液为基础溶液,添加氯化锂或溴化锂颗粒形成混合溶液来提高单一氯化钙溶液的除湿能力。测量了单一氯化钙溶液,加LiCl/LiBr颗粒后饱和混合溶液的质量浓度,探究极限溶解度,其次对氯化钙、氯化锂不同配比混合溶液在不同温度下的黏度及表面张力进行了测量。通过溶解度的实验测量,发现已经饱和的氯化钙溶液中还可继续溶解最高达8%的LiCl/LiBr晶体。测量得不同配比氯化锂、氯化钙混合溶液的黏度与表面张力值,通过比较发现氯化锂与氯化钙1:1的质量比下,混合溶液的黏度与表面张力均最低。  相似文献   

11.
粘胶基活性炭纤维对甲苯的吸附及再生   总被引:3,自引:0,他引:3  
在自制的实验装置上,研究了粘胶基活性炭纤维(ACF)对甲苯气体的吸附及其吸附饱和后采用高温水蒸气解吸、再生。正交实验表明,甲苯气体流量、浓度和粘胶基ACF的填充高度对吸附过程都有显著的影响。最佳操作参数为:温度13.0℃、粘胶基ACF用量1.50 g、填充高度15 cm、甲苯气体流量0.8 m3/h、甲苯进口平均浓度89.7 mg/m3,脱附平均温度136.0℃时,粘胶基ACF对甲苯气体吸附再生效果较好。验证了粘胶基ACF的吸附量与气体进口浓度成正比,与气体流量成反比关系。  相似文献   

12.
彭冬根  徐少华 《化工学报》2020,71(4):1554-1561
介绍了一种基于蒸发冷却的外冷型溶液除湿装置设计原理及实验样机结构。分别以LiCl和CaCl2溶液为除湿剂,以除湿率和除湿空气出口温度为评价指标,通过实验对比分析了LiCl和CaCl2在蒸发冷却条件下的除湿性能差异。结果表明:在所有实验条件下,浓度为0.35的LiCl溶液与浓度为0.45的CaCl2溶液除湿性能相似,其除湿率与对应空气出口温度均高于浓度为0.35的CaCl2溶液;浓度为0.35的LiCl溶液比浓度为0.35的CaCl2溶液的除湿率要约提高73%,并且空气流量越大其绝对提高值越大。另外,蒸发冷却空气流量增加除使除湿率增加外还会降低空气出口温度,约1.4℃;改变喷淋水温度对CaCl2溶液除湿性能的影响比对LiCl溶液更为明显。研究结果为该种外冷型溶液除湿器的实际应用提供参考。  相似文献   

13.
燃煤电厂湿法脱硫后排放的烟气中含有大量水蒸气,造成大量水资源的浪费,溶液除湿工艺是水分回收技术之一。通过绝热型管式降膜除湿试验台,采用价格低廉的CaCl_2溶液为除湿剂,探究了湿烟气状态下溶液浓度、溶液温度、传质面积及进口温度对除湿性能的影响,试验得到了CaCl_2溶液除湿过程的传质系数,溶液除湿效率远高于清水冷凝除湿,为烟气除湿工艺的选择和性能预测提供了参考。  相似文献   

14.
彭冬根  张小松 《化工学报》2008,59(11):2875-2883
太阳能溶液集热/再生器是集太阳能光热转化和溶液再生于一体的装置,它能有效实现太阳能溶液除湿蒸发冷却系统的溶液再生。通过自定义总温差(ΔT0)和量纲1散热系数两个变量,得到以传热单元数为自变量的量纲1耦合传热、传质模型,并通过与相关实验对比对模型进行了验证。通过对空气和溶液入口参数变化对溶液集热再生性能影响分析,发现空气入口温度提高12℃、湿度降低12 g•kg-1,溶液出口浓度升幅分别提高30%和70%以上;溶液入口温度提高30℃,溶液出口浓度升幅提高160%以上。对4组量纲群分析,得到传热单元数NTU、流量比ASMR、总温差ΔT0和Lewis数Le的增加都能促进溶液再生。逆流再生比顺流再生的出口浓度增幅能提高10%左右。  相似文献   

15.
设计了一种内热源盘管作为填料支架、溶液和空气采用逆流换热的内热型再生器,并将其用于一种冷凝热分段利用的热湿独立处理空调系统中,可大幅度提高再生性能。搭建了逆流内热型再生器实验台,以氯化锂溶液为除湿剂,研究了溶液温度、流量,空气温度、流量对再生热效率和再生量的影响,结果表明内热型再生过程中应尽量避免通过提高空气进口温度来提高再生性能。并将内热型与绝热型再生过程进行了对比研究,结果表明内热型再生器再生量高于绝热型再生器。  相似文献   

16.
王琴  吴薇  刘松松  顾陈杰  陈聪  唐志彪 《化工学报》2016,67(Z1):186-194
设计了一种内热源盘管作为填料支架、溶液和空气采用逆流换热的内热型再生器,并将其用于一种冷凝热分段利用的热湿独立处理空调系统中,可大幅度提高再生性能。搭建了逆流内热型再生器实验台,以氯化锂溶液为除湿剂,研究了溶液温度、流量,空气温度、流量对再生热效率和再生量的影响,结果表明内热型再生过程中应尽量避免通过提高空气进口温度来提高再生性能。并将内热型与绝热型再生过程进行了对比研究,结果表明内热型再生器再生量高于绝热型再生器。  相似文献   

17.
通过对比现有的空气源热泵空调系统的优缺点,提出了一种新型无霜空气源热泵空调系统。该热泵系统最大的新颖之处在于热交换塔实现了"一塔三用",不仅冬季可以无霜高效运行与再生,夏季蒸发冷却后性能也有所提升。通过搭建该系统实验平台研究了溶液塔入口空气温湿度、空气流量、溶液入口温度、溶液流量、溶液质量分数对除湿性能及空气出口温度与溶液出口温度的影响,结果表明:出口空气与溶液温度随入口空气温湿度、流量、溶液温度、质量分数的升高,溶液流量的下降而升高;溶液塔的除湿效率主要受风量和溶液流量的影响,而入口空气温湿度、入口溶液温度、溶液质量分数影响很小,溶液塔的除湿量随着室外空气湿度的升高、入口溶液温度的降低、空气流量和溶液流量的升高而升高。  相似文献   

18.
提出了溶液降膜吸收和膜反转技术结合的一种新型除湿器填料——膜反转规整填料。设计并搭建了膜反转规整填料液体除湿实验台,研究了溶液不同入口浓度、温度、流量和空气不同入口流量、温度、含湿量对液膜反转除湿性能的影响。本研究为膜反转规整填料在液体空气除湿方面的工程设计和实际应用提供了一定依据,也为进一步开发高效紧凑热质传递元件及设备提供了一些方法和思路。  相似文献   

19.
为了研究可溶性盐氯化钙(CaCl_2)/硼砂对真空闪蒸制取冰浆的影响,在蒸馏水中加入CaCl_2作为添加剂,硼砂作为成核剂,通过引入固体吸附模块,进行了真空制冰实验。结果表明:添加CaCl_2可吸收部分闪蒸过程产生的水蒸气,并能缩短液相降温时间;随着CaCl_2浓度的升高,过冷度及含冰率逐渐降低,闪蒸率呈非线性变化;CaCl_2的添加质量分数建议为1%,能降低水的过冷度达2.08℃,含冰率达24.10%,闪蒸率达17%;硼砂的添加对降低CaCl_2溶液在闪蒸制取冰浆系统中几乎没有作用,相较于纯水,随着硼砂浓度的增加,CaCl_2-硼砂复合溶液对过冷度呈小幅降低趋势;随着初始温度的降低,闪蒸过程中的过冷度逐渐降低,含冰率逐渐升高,较低的初始温度有利于冰浆的制备。  相似文献   

20.
采用HYSYS模拟软件结合实际操作参数修正并验证后的模型,对某脱酸装置影响脱酸效果的原料气温度、胺液循环量、胺液浓度、吸收塔压力、闪蒸压力、再生塔回流比等主要因素进行了适应性分析及解释。结果表明:胺液循环量、贫胺液浓度、再生塔回流比是影响能耗的主要因素;原料气温度、吸收压力对吸收效果和性能影响有限;闪蒸压力的确定对再沸器负荷有一定的影响,应结合闪蒸气去向最终确定。可对该装置操作优化及指导后续操作优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号