首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline Ni doped Na.5Bi0.5TiO3 samples (Na0.5Bi0.5)Ti1-xNixO3, (x?=?0.5, 0.10, 0.15) have been prepared by solid state reaction. The appearance of the additional peak in X-ray diffraction pattern indicates the ordering of Ti4+ and Ni2+ ions. Polygonal grains are converted into flakes with an increase of Ni concentration. Replacement of Ti4+ by Ni2+ strongly modifies the relative contribution of two peaks in the Raman bands within 200–400?cm?1. Oxygen vacancy is observed in X-ray photoelectron spectrum to maintain charge neutrality due to aliovalent doping. Broad diffuse phase transition centered at the dielectric constant maximum indicates relaxor behaviour. Comparison between impedance and electric modulus spectrum suggests non-Debye relaxation. The ac conductivity follows the power law with the frequency exponent lies 0.52???0.72. The generation of holes by divalent Ni dopant at tetravalent Ti sites enhances optical band gap.  相似文献   

2.
New lead-free dielectric ceramics, Na1+xBiTi6O14+0.5x (x?=??0.02, ??0.01, 0.01, 0.02), were prepared by the conventional solid-state method. Micro-structural and electrical properties of Na1+xBiTi6O14+0.5x were studied. XRD showed all the samples exhibited a single structured phase. Grains decreased at the beginning, then grew with the increasing x content in SEM. Impedance spectra (IS) analysis evidenced the phenomena that the dielectric permittivity increased firstly, then decreased, while the loss had the opposite trend. Z* plots showed that Na1+xBiTi6O14+0.5x ceramics were a kind of dielectrics. The activation energy (Ea) could be calculated in the range of 1.53–1.65?eV, which indicated they were dielectric ceramics. Na1+xBiTi6O14+0.5x ceramics (x?=?0.01) sintered at 1040?°C showed prominent dielectric properties with a dielectric constant of 25.76, loss of 0.07%, Ea of 1.65?eV, density of 3.463?g/cm3, impedance of 0.532?MΩ?cm, -Z′′max of 0.1958?MΩ?cm, capacitance of 5.56?pF/cm (600?℃), which were enhanced much compared with other samples. The existence of dielectric properties with high dielectric constant, low dielectric loss and wide operating temperature range makes it possible to develop the ceramics into high-temperature capacitors.  相似文献   

3.
In this work, the modulation of photoluminescence (PL) properties, which was realized by the composition and poling-induced structural evolution, for the Pr3+ doped (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 (NBT-xBT: Pr3+) piezoelectric ceramics was systematically investigated. Based on the Rietveld refinement structural analysis, there were two distinct composition ranges characterized by different structural features for NBT-xBT: Pr3+ ceramics at room temperature: (i) rhombohedral R3c + monoclinic Cc phases for the compositions of x  0.03, and (ii) tetragonal P4bm + monoclinic Cc phases for 0.04  x  0.07. It was interesting to notice that the PL emission intensity is positively correlated with the phase fraction of Cc, which is closely related to the crystal symmetry of NBT-xBT: Pr3+ ceramics. The compositions with x  0.06 underwent an irreversible phase transformation on the application of electric field. The dielectric and Raman measurement revealed a transition from a relaxor state to a normal ferroelectric for the x  0.06 compositions under an applied poling electric field, with not only the reduction in the in-phase octahedral tilting disorder but also the establishment of long-range ordering. These electric field-induced structural changes were responsible for poling-induced PL quenching behaviors as a result of the increased local structure symmetry around doped Pr3+ ions in the poled ceramics.  相似文献   

4.
In this work, the fabrication and investigation of substituting higher-valence Mo6+ for Ti4+ ion on the B-site of La3+-doped Bi4Ti3O12 [BLT] structure to form Bi3.25La0.75(Ti1-x Mo x )3O12 [BLTM] (when x = 0, 0.01, 0.03, 0.05 0.07, 0.09, and 0.10) ceramics were carried out. X-ray diffraction patterns of BLTM ceramics indicated an orthorhombic structure with lattice distortion, especially with a higher concentration of a MoO3 dopant. Microstructural investigation showed that all ceramics composed mainly of plate-like grains. An increase in MoO3 doping content increased the length and thickness of the grain but reduced the density of the ceramics. Electrical conductivity was found to decrease, while the dielectric constant increased with Mo6+ doping concentration. Ferroelectric properties were found to be improved with increasing MoO3 content and were optimized at x = 0.1.  相似文献   

5.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

6.
In this work, Na0.5Bi4.5Ti3.94–xMn0.06NbxO15+y bismuth-layered ferroelectric ceramics were prepared by a solid-state reaction method. The effect of Nb5+ content on crystal morphology, electrical properties, and piezoelectric performance were systematically investigated. The results show that the introduction of Nb5+ into Na0.5Bi4.5Ti3.94–xMn0.06NbxO15+y ceramics to replace Ti4+ increases the ratio of b/a lattice parameter, leading to the TiO6 octahedral distortion and the structural transformation tendency from the orthorhombic to tetragonal phase, which facilitates dipole movements of Na0.5Bi4.5Ti3.94–xMn0.06NbxO15+y ceramics. Therefore, the ferroelectric properties of Na0.5Bi4.5Ti3.94–xMn0.06NbxO15+y ceramics are improved, and an enhanced piezoelectric coefficient of 30 pC/N combining great temperature stability with d33 value higher than 25 pC/N in the temperature range of 25°C–450°C has been realized in Na0.5Bi4.5Ti3.94–xMn0.06NbxO15+y ceramics with x = 0.08 mol. Our work provides a good model for designing lead-free ultrahigh Curie temperature piezoelectric devices that can be practically applied in extremely harsh environments.  相似文献   

7.
The microwave dielectric properties of Sm(Mg0.5Ti0.5)O3 incorporated with various amount of Bi2O3 and B2O3 additives have been investigated systematically. In this study, both Bi2O3 and B2O3 additives acting as a sintering aid can effectively lower the sintering temperature from 1550 °C to 1300 °C. The ionic radius of Bi3+ for a coordination number of 6 is 0.103 nm, whereas the ionic radius of B3+ is 0.027 nm. Clearly, the ionic radius of Bi3+ is greatly larger than one of B3+, which resulted in the specimens incorporated with Bi2O3 having larger lattice parameters and cell volume than those incorporated with B2O3. The experimental results show that no second phase was observed throughout the entire experiments. Depending on the interfacial tension, the liquid phase may penetrate the grain boundaries completely, in which case the grains will be separated from one another by a thin layer as shown in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with Bi2O3. Whereas, in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with B2O3, the volume fraction of liquid is high, the grains may dissolve into the liquid phase, and rapidly rearrange, in which case contact points between agglomerates will be dissolved due to their higher solubility in the liquid, leading plate-like shape microstructure.A dielectric constant (?r) of 29.3, a high Q × f value of 26,335 GHz (at 8.84 GHz), and a τf of −32.5 ppm/°C can be obtained for Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 10 mol% Bi2O3 sintered at 1300 °C. While Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 5 mol% B2O3 can effectively lower temperature coefficient of resonant frequency, which value is −21.6 ppm/°C. The Sm(Mg0.5Ti0.5)O3 ceramic incorporated with heavily Bi2O3 and B2O3 additives exhibits a substantial reduction in temperature (∼250 °C) and compatible dielectric properties in comparison with that of an un-doped one. This implied that this ceramic is suitable for miniaturization in the application of dielectric resonators and filters by being appropriately incorporated with a sintering aid.  相似文献   

8.
(CaBi4Ti4O15)1-x(Bi4Ti3O12)x (CBT-xBIT) Aurivillius phase ceramics were synthesized by the conventional solid reaction method. The evolution of the structure and the electrical properties of CBT-xBIT ceramics were systematically investigated. Due to the enhanced spontaneous polarization induced by internal stresses on the Bi2O2 layers in the CBT-xBIT structure, the optimal piezoelectric coefficient (d33 ~ 13?pC/N) was obtained in the ceramics with x?=?0.3 while exhibiting a relatively good thermal stability in the temperature range of 20–700?°C. The dc resistivity (ρdc) of the CBT-xBIT ceramics exhibited a higher value (≥?109 Ω?cm) at room temperature, and the tan δ value of CBT-xBIT (x= 0, 0.1 and 0.3) within the temperature range of 20–500?°C maintained stability as a result of the domain structure and point defect concentration in the ceramics. In addition, a distinctive double dielectric peak anomaly was observed in the εr-T curves of the CBT-xBIT (x= 0.3, 0.5 and 0.7) ceramics, and it plays a remarkable role in the thermal stability of the piezoelectricity of CBT-xBIT ceramics. As a result, such research can benefit high temperature practical piezoelectric devices.  相似文献   

9.
In this study, the phase structure, microstructure and dielectric properties of Bi0.5(Na0.78K0.22)0.5(Ti1-xNbx)O3 lead-free ceramics prepared by traditional solid phase sintering method were studied. The second phase pyrochlore bismuth titanate (Bi2Ti2O7) was produced in the system after introduction of Nb5+. The dielectric constant of the sample (x = 0.03) sintered at 1130 °C at room temperature reached a maximum of 1841, and the dielectric loss was 0.045 minimum. It had been found that the K+ and Nb5+ co-doped Bi0.5Na0.5TiO3 (BNT) lead-free ceramics exhibited outstanding dielectric-temperature stability within 100–400 °C with Tcc ≤±15%. Result of this research provides a valuable reference for application of BNT based capacitors in high temperature field.  相似文献   

10.
Bismuth sodium zirconate titanate ceramics with the formula Bi0.5Na0.5Zr1-xTixO3 [BNZT], where x = 0.3, 0.4, 0.5, and 0.6, were prepared by a conventional solid-state sintering method. Phase identification was investigated using an X-ray diffraction technique. All compositions exhibited complete solubility of Ti4+ at the Zr4+ site. Both a decrease of unit cell size and phase transition from an orthorhombic Zr-rich composition to a rhombohedral crystal structure in a Ti-rich composition were observed as a result of Ti4+ substitution. These changes caused dielectric properties of BNZT ceramics to enhance. Microstructural observation carried out employing SEM showed that average grain size decreased when addition of Ti increased. Grain size difference of BNZT above 0.4 mole fraction of Ti4+ displayed a significant increase of dielectric constant at room temperature.  相似文献   

11.
Novel lead-free [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1-x(Al0.5Nb0.5)xO3 ceramics (BNBLT-xAN) were prepared by the conventional solid state sintering method. The dielectric, ferroelectric, ac impedance and energy-storage performance were systematically investigated. Temperature dependent permittivity curves showed that relaxation properties of sintered ceramics gradually diminished with the increase of AN. The introduction of AN gave rise to a slimmer polarization hysteresis loop (P-E) and an enhanced dielectric breakdown strength (DBS). Therefore, the optimum energy-storage performance were realized at x?=?0.05 with the energy-storage density (Wrec) of 1.72?J/cm3 and energy-storage efficiency (η) of 85.6% at 105?kV/cm, accompanied with the excellent temperature stability and fatigue performance. The results demonstrated that BNBLT-xAN system was a promising lead-free candidate for energy-storage applications.  相似文献   

12.
In this study, Sm3+ doped Na0.5La0.5Bi8-xSmxTi7O27 (NBT-BITL-xSm, x = 0, 0.01, 0.015, 0.02, and 0.03) ceramics were synthesized via a conventional solid-state reaction process. The structural, electrical, and photoluminescence properties of NBT-BITL-xSm ceramics were systematically investigated. The crystal structure of NBT-BITL-xSm was refined using XRD Rietveld refinement and found to possess a single orthorhombic structure at room temperature. Raman spectroscopy revealed that Sm3+ ions preferred to substitute for Bi3+ located in the A-sites of pseudo-perovskite layers, inducing a slight decrease in orthorhombic distortion. Strong characteristic emission peaks of Sm3+ ions were observed in orange-red regions under a 407 nm laser source, and the sample with x = 0.015 achieved the optimal photoluminescent property. Dielectric measurements showed double anomaly permittivity peaks at the temperature of 589 and 600°C (Tm and Tc, respectively). The complex impedance spectrum indicated that the electrical conductivities mainly originated from crystal grains at high temperature. The activation energy was calculated to be 1.37–1.44 eV from Arrhenius fitting results. After Sm3+ substitution, the activation energy for conductivity was increased as a result of reduced oxygen vacancies.  相似文献   

13.
The Ca0.61Nd0.26Ti1-x(Cr0.5Ta0.5)xO3 (CNT-CTx) ceramics with orthorhombic perovskite structure were prepared using the conventional solid-state method. The X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectra (XPS) were employed to investigate the correlations between crystal structure and microwave dielectric properties of CNT-CTx ceramics. The XRD results showed that all CNT-CTx samples were crystallized into the orthorhombic perovskite structure. The SEM micrographs indicated that the average grain size of samples depended on the sintering temperature. As (Cr0.5Ta0.5)4+ concentration increased, there was a significant decrease in the average grain size of samples. The short range order (SRO) structure and structural distortion of oxygen octahedra proved to exist in CNT-CTx crystals according to the analysis of Raman spectra results. The microwave dielectric properties highly depended on the full width at half maximum (FWHM) of Raman spectra, oxygen octahedra distortion, reduction of Ti4+ to Ti3+ and bond valence. At last, the CNT-CT0.05 ceramic sintered at 1420?°C for 4?h exhibited the good and stable comprehensive microwave dielectric properties: relative permittivity of 96.5, quality factor of 14,360?GHz, and temperature coefficient of resonant frequency of +153.3?ppm/°C.  相似文献   

14.
A series of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 (BNT-BST-100xNN) lead-free ceramics were fabricated using conventional solid-state reaction technique. The phase behavior, microstructure, dielectric, ac impedance and energy-storage properties of the sintered ceramics were systematically investigated. XRD patterns and surface SEM micrographs revealed the introduction of NaNbO3 didn't change the perovskite structure of BNT-BST at low doping level. The NaNbO3 doping gave rise to slimmer P-E loops and thus gained enhanced energy storage properties. Therefore, a maximum energy storage density of 1.03 J/cm3 was achieved at 85 kV/cm at x = 0.01 via increasing the dielectric breakdown strength (DBS). Temperature-dependent dielectric permittivity illustrated the enhanced relaxor characteristics, implying the long-rang ferroelectric order was further damaged due to the introduction of NaNbO3. The results above indicate the sintered ternary ceramics can be a promising lead-free candidate for energy storage capacitors.  相似文献   

15.
The electric and dielectric properties of Na0.5Bi4.50+xTi4Oy (x = −0.02, 0, 0.02) prepared by conventional mixed oxide route have been investigated by impedance spectroscopy (IS) over a wide temperature range. Single-phase bismuth layer-structured perovskite patterns were observed through X-ray diffraction of the three samples Na0.5Bi4.5Ti4O15, Na0.5Bi4.48Ti4Oy, and Na0.5Bi4.52Ti4Oy. The results show that the relative permittivity (εr) increases with the increase in temperature and reaches its maximum at about 675℃. With the continuous increase in temperature, the permittivity decreases gradually. Both relative permittivity and dielectric loss show great stability at the low-temperature zone. The ceramic of x = 0.02 with Ea of 1.09 eV has the maximum oxygen ionic transport number between 600 and 800℃ for all samples. And at this time, it has the maximum electrical conductivity. All the results indicated that Na0.5Bi4.50+xTi4Oy (x = −0.02, 0, 0.02) ceramics were promising base materials for high-temperature capacitor because of their high dielectric properties.  相似文献   

16.
Lead-free (K0.4425Na0.52Li0.0375) (Nb0.9625−xSbxTa0.0375)O3 piezoelectric ceramics were prepared by the conventional sintering method. The effects of the Sb content on the phase structure, microstructure, dielectric, piezoelectric, and ferroelectric properties of the (K0.4425Na0.52Li0.0375) (Nb0.9625−xSbxTa0.0375)O3 ceramics were investigated. The much higher Pauling electronegativity of Sb compared with Nb makes the ceramics more covalent. By increasing x from 0.05 to 0.09, all samples exhibit a single perovskite structure with an orthorhombic phase over the whole compositional range, and the bands in the Raman scattering spectra shifted to lower frequency numbers. The grain growth of the ceramics was improved by substituting Sb5+ for Nb5+. Significantly, the (K0.4425Na0.52Li0.0375) (Nb0.8925Sb0.07Ta0.0375)O3 ceramics show the peak values of the piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), and dielectric constant (?), which are 304 pC/N, 48% and 1909, respectively, owing to the densest microstructure of typical bimodal grain size distributions. Besides, the underlying mechanism for variations of the electrical properties due to Sb5+ substitution was explained in this work.  相似文献   

17.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   

18.
Lead-free (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramics (x = 0–0.9) are fabricated by solid state reaction process. XRD analysis shows the symmetry divergence from tetragonal to orthorhombic phase accompanied by morphotropic phase boundary with increasing strontium content. Raman spectra confirm the incorporation of strontium into (Bi2.5Na0.5Ti4O13)2- layers. SEM graphs exhibit the typical plate-like morphology with regular variation of grain size and crystallization as strontium increases. Multistage ferroelectric transition is observed with x = 0.2–0.4. Piezoelectric performance measurements present the well thermal stability at x = 0.4. The dielectric properties display a shifting of Curie temperature towards low temperature with increasing strontium ions. It can be due to the crystal lattice distortion by larger radius of strontium and the increasing tolerance factor. ac conductivity and impedance measurements suggest that electron hopping mainly contributes to the low temperature region. Ionization conductivity by oxygen vacancy migration including first-ionization and double-ionization plays the dominating role in the middle and high temperature region. The controllable properties indicate the potential applications for electric devices of (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramic.  相似文献   

19.
Apart from discharge energy density (Wr) and discharging time (t0.9), thermal stability and anti-fatigue for charge-discharge performance are also the important performance indexes for dielectric pulsed capacitor. Na0.5Bi0.5TiO3 based ceramics are usually accompanied by huge electric field-induced strain when appling electric field, resulting in the fatigue phenomenon and thermal accumulation effect in the cycling process. In this work, Na0.5Bi0.5TiO3-xNaNbO3 (NBT-xNN) ferroelectric relaxor ceramic has been prepared by the solid state reaction process. The effect of NaNbO3 content on microstructures, impedance spectroscopy, electric-field-induced strain and charge-discharge performance of NBT-xNN ceramics have been investigated systematically. Results indicate the proper percent of NaNbO3 could favor the formation of polar nanoregions (PNRs), which leads to the diffusion of phase transition and the diminution of electromechanical strain. Therefore, the high thermal stability and anti-fatigue for charge-discharge property has been achieved in NBT-xNN ceramics. An enhanced discharging energy density of 2.44 J cm?3 along with discharge time of 0.31 μs could be obtained in the NBT-xNN with x = 0.3, and a very stable discharge energy density of 2.06 J cm?3 concomitantly with discharge time less than 0.37 μs could be gained in a wide temperature range of 20–150 °C with a fluctuation of ±4% after 104 charge/discharge cycles. This work would contribute to the development of charge-discharge system, especially dielectric capacitor, for green pulsed power devices.  相似文献   

20.
Textured (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) ceramics with a relative density of >94% were fabricated by reactive-templated grain growth. Plated-like Bi4Ti3O12 template particles synthesized by the NaCl–KCl molten salt process were aligned by tape casting in a mixture of original oxide powders. The effect of sintering temperature on the grain orientation and electrical properties of textured NKBT ceramics were investigated. The results show that the textured ceramics have a microstructure with plated-like grains aligning in the direction parallel to the casting plane. The degree of grain orientation increased at increasing sintering temperature. The textured ceramics show anisotropic electrical properties in the directions parallel and perpendicular to the casting plane. The dielectric constant parallel to {h 0 0} plane is three times higher than that of the perpendicular direction in textured NKBT ceramics. The optimized sintering temperature is 1150 °C where the maximum dielectric constant is 2041, the remnant polarization is 68.7 μC/cm2, the electromechanical coupling factor (k31) and the piezoelectric constant (d33) amount to 0.31 and 134 pC/N, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号