首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 mA·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。  相似文献   

2.
以天然硅酸盐矿物还原制备硅负极材料,即可以继承天然矿物结构来提高硅材料的电化学性能,又具有低成本的特点。以天然埃洛石铝热还原的产物为原料,沥青为碳源,采用简单的蒸发溶剂的方法制备了硅碳复合材料。结果表明:硅是以直径为30 nm左右的纳米管形式存在,碳层均匀地包覆在硅纳米管上,使得硅碳复合材料的直径增大,碳层厚度约为7 nm,碳以无定形结构存在,碳包覆还导致比表面积下降。电化学测试表明,与硅纳米管相比,当包覆碳含量(质量分数)为15%时电化学性能最好,首次充放电容量分别为1 387.8 mA·h/g和1 615.7 mA·h/g,首次Coulombic效率达到85.9%。不但保持住了硅纳米管的首次充放电效率,循环性能得到大幅度提升,与硅纳米管的循环200次容量保持率38%相比,包覆碳含量为15%的循环200次容量保持率提高了45.8%。包覆碳含量为15%的硅/碳复合材料的500次循环后比容量为1 065.6 mA·h/g。容量保持率为76.8%。  相似文献   

3.
为了提高TiO_2负极材料的电化学性能,采用球磨-超声-水热法制备了TiO_2/C/BP复合负极材料,测定了材料的循环放电比容量、倍率性能、循环伏安曲线和交流阻抗。结果表明,二氧化钛掺杂石墨、黑磷后,二氧化钛晶型不受影响,TiO_2/C/BP复合材料颗粒分散性得到改善、交流阻抗减小、导电性明显增强,与纯TiO_2相比,电流密度为100 mA/g,首圈放电比容量由320 mA·h/g提高到502 mA·h/g,第3圈放电比容量由175 mA·h/g提高到335 mA·h/g,经过100次循环后,纯TiO_2的放电比容量降至98 mA·h/g,而TiO_2/C/BP的放电比容量仍维持在255 mA·h/g,放电比容量保持率明显提高,库伦效率的稳定性也得到显著提高。  相似文献   

4.
针对氧化亚硅(SiO)负极材料充放电过程中体积膨胀较大、容量衰减较快的问题,采用米粉作为碳源对SiO进行包覆改性。XRD测试结果表明,SiO和糯米粉包覆改性材料SiO-NM均没有显著的特征峰,为非晶体结构。SiO的首次放电比容量为1 980.6 mA·h/g,首次充电比容量为891.2 mA·h/g,首次充放电效率为45.0%;糯米粉包覆改性材料SiO-NM的首次放电比容量为942.9 mA·h/g,首次充电比容量为490.4 mA·h/g,首次充放电效率为52.0%,首次充放电效率显著提升。交流阻抗测试结果表明,SiO-NM的电荷转移阻抗Rct为213.7Ω,显著小于Si的465.4Ω,表明材料的导电性能得到提高。  相似文献   

5.
通过电解液中NO_3~–的电化学还原、Zn(OH)_2的化学沉积及后续的水解反应,在Fe箔表面生成了一层多级ZnO纳米片(ZnONS),并研究了其微观形貌、微观结构、电化学储锂性能及反应机理。结果表明:多级ZnO纳米片确实形成并紧密结合在Fe箔表面,而且,用于锂离子电池负极时,多级ZnONS/Fe负极的首次充–放电比容量分别为633和1 564 mA·h/g,Coulomb效率为41%;第2次循环的充–放电比容量分别为564和595 mA·h/g,Coulomb效率增加到95%。循环充放电50次时,放电比容量仍达200 mA·h/g,表现了良好的循环稳定性和倍率性能。多级ZnONS/Fe负极的首次不可逆容量损失,主要与电解液的分解和固态电解质界面膜的形成有关。  相似文献   

6.
不同碳源掺杂磷酸亚铁锂正极材料电化学性能研究   总被引:1,自引:1,他引:0  
采用液相共沉淀-固相焙烧合成了橄榄石型磷酸亚铁锂(LiFePO4)正极材料,用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试等方法对产物物相结构、表观形貌和电化学性能进行了表征和分析.纯相材料首次放电比容量达到90.6 mA·h/g,循环5次后,放电比容量为75.94 mA·h/g.为解决首次放电比容量低下以及材料循环性能差的问题,采取不同碳源掺杂对材料进行改进,最后得到LiFePO4/C复合正极材料,0.05 C首次放电比容量达到158.8 mA·h/g.  相似文献   

7.
以葡萄糖为碳源,以Li_2CO_3、TiO_2为原料,采用原位复合法制得不同碳质量分数的锂离子电池复合负极材料Li_4Ti_5O_(12)-C。通过X射线衍射和扫描电子显微镜对复合材料的结构及表面形貌进行了表征,采用恒流充放电和电化学阻抗等技术对复合材料进行电化学性能测试。结果表明:Li_4Ti_5O_(12)-C没有杂相,颗粒均匀。其中,碳质量分数为3%的复合材料在0.5 C下的首次放电比容量最高,为185.9 mA·h/g,循环50次后,其放电比容量仍为161.5 mA·h/g,容量保持率为86.9%;在4.0 C下,其首次放电比容量为106.9mA·h/g。与其他样品相比,碳质量分数为3%的复合材料循环伏安氧化还原峰电位相差为278.6 mV,溶液阻抗为6.198?,电荷转移电阻为187.2?,电化学性能最好。  相似文献   

8.
采用高能球磨法制备了纳米硅/石墨烯(Si@G)复合锂离子电池负极材料,并研究了高能球磨时间对Si@G复合材料成分和电化学性能的影响。X射线衍射分析结果表明:球磨40 min后,产物中出现少量电化学惰性的碳化硅。球磨20 min的Si@G复合材料具有最高的首次放电比容量(3 418 mA?h/g)和首次Coulomb效率(89%),但其充放电循环稳定性较差,放电比容量在33次充放电后即衰减为首次的80%。而球磨40 min的Si@G复合材料,充放电84次后,其容量保持率仍为80%。表明没有储锂容量的杂质相SiC虽然导致Si@G负极材料的首次充放电比容量下降,但有利于提高充放电循环稳定性。  相似文献   

9.
采用水热法,以V_2O_5、C_(12)H_(22)O_(11)、Co(NO_3)_2·6H_2O、Al(NO_3)_3·9H_2O为原料,分别合成了纯相VO_2(B)和Al/Co共掺杂VO_2(B)。X射线衍射分析结果显示,掺杂后样品的衍射峰强度变低、峰形变宽、结晶性下降。扫描电子显微镜照片显示,掺杂后样品的形貌发生明显变化,由长棒状(纯相)变为短棒状与片状均匀混合的形貌。电化学性能测试结果显示首次放电比容量和循环性能都大幅度提高。样品A1(摩尔比n(Al):n(Co):n(V)=12:6:100)首次放电比容量为301 mA·h/g,比未掺杂样品(216 mA·h/g)高85 mA·h/g;样品A2(摩尔比n(Al):n(Co):n(V)=12:12:100)首次放电比容量为285 mA·h/g,比未掺杂样品高69 mA·h/g,并且掺杂样品经过100次充放电循环后容量保持率都比未掺杂样品高。  相似文献   

10.
采用液相沉积法在导电碳布表面原位生长Co-MOFs纳米片,制得了Co-MOFs/CF复合材料。通过红外光谱、X射线衍射、扫描电子显微镜、恒流充放电、循环伏安、电化学阻抗等手段对材料的组成、结构形貌和电化学性能进行了表征。结果表明:当用作无黏结剂型锂离子电池电极时,在50 mA/g电流密度下,Co-MOFs/CF的首次放电比容量为1 621.3 mA·h/g,100次循环后,其放电比容量仍可达445.1 mA·h/g。相比于纯Co-MOFs,Co-MOFs/CF的首次Coulomb效率和循环性能均有明显改善,主要归因于Co-MOFs的二维片状结构与碳布良好导电性之间的协同作用,Co-MOFs/CF优异的电化学性能使其成为很好的锂离子电池电极候选材料。  相似文献   

11.
采用液相沉积法在导电碳布表面原位生长Co–MOFs纳米片,制得了Co–MOFs/CF复合材料。通过红外光谱、X射线衍射、扫描电子显微镜、恒流充放电、循环伏安、电化学阻抗等手段对材料的组成、结构形貌和电化学性能进行了表征。结果表明:当用作无黏结剂型锂离子电池电极时,在50 mA/g电流密度下,Co–MOFs/CF的首次放电比容量为1 621.3 mA·h/g,100次循环后,其放电比容量仍可达445.1 mA·h/g。相比于纯Co–MOFs,Co–MOFs/CF的首次Coulomb效率和循环性能均有明显改善,主要归因于Co–MOFs的二维片状结构与碳布良好导电性之间的协同作用,Co–MOFs/CF优异的电化学性能使其成为很好的锂离子电池电极候选材料。  相似文献   

12.
针对SnO2用作锂离子电池负极材料所存在的体积膨胀率高及导电性差的不足,考察了羧甲基纤维素钠(CMC)/丁苯橡胶(SBR)和聚偏氟乙烯(PVDF)黏结剂对SnO2、SnO2/石墨烯负极材料电化学性能的影响。结果表明:1)200 mA/g下经过30次充放电循环后,当以CMC/SBR作复合黏结剂时,SnO2的首次放电容量和容量保持率分别为581.3 mA·h/g和37.6%,明显高于PVDF作黏结剂时的电化学性能(135.3 mA·h/g、10.6%);2)200 mA/g下经过100次循环后,当以CMC/SBR作复合黏结剂时,SnO2/石墨烯复合负极材料的首次放电容量、容量保持率分别为702.3 mA·h/g和43.8%,也高于PVDF作黏结剂时的电化学性能(552 mA·h/g和32.8%)。  相似文献   

13.
以微波辅助氯化胆碱-乙二醇合成的纺锤体LiMnPO_4纳米颗粒为原料,采用喷雾干燥法制备LiMnPO_4/C多孔微球,采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、拉曼光谱(Raman)、比表面积(BET)及孔径分析(BJH)、恒流充放电技术、循环伏安(CV)、电化学阻抗谱(EIS)等研究了焙烧时间对LiMnPO_4/C多孔微球的结构、形貌和电化学性能的影响。结果表明:在焙烧时间为5 h时,合成材料的电化学性能最好,1C倍率下首次放电比容量为140 mA·h/g,100次循环后容量保有率为95%,5C下放电比容量为119 mA·h/g,表现出了良好的循环性能和倍率性能。  相似文献   

14.
采用石墨化炉对腐植酸进行石墨化处理,以腐植酸基石墨化材料为原料,葡萄糖和片状石墨为中间相,经高温(750℃)炭化处理制备煤系腐植酸基炭/葡萄糖/石墨复合材料;采用扫描电子显微镜(SEM)、X射线衍射(XRD)法和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征.结果表明:片状石墨分散在腐植酸基石墨化材料周围,且被无定型炭包覆.C-C-2复合材料作为锂离子电池的负极材料,具有较高的比容量,在0.1C倍率下的首次可逆比容量为307.3mA·h/g,首次库仑效率为76.3%;在1C和2C倍率下,50个充放电循环后,可逆比容量分别为283.3mA·h/g和152.2mA·h/g,容量保持率分别高达97.9%和97.5%;具有良好的循环稳定性及大倍率性能.  相似文献   

15.
采用静电纺丝法制备Si/PAN纳米纤维,并对其进行载荷冷冻干燥、热处理和炭化处理,制得锂离子电池负极用Si/C纳米纤维材料。通过XRD、SEM、TG-DSC和电化学性能测试分别对其结构、形貌、硅含量和电化学性能等进行分析测试。结果表明:Si/PAN纳米纤维的平均直径为200~500 nm,Si/C纳米纤维材料的平均直径为100~200 nm。当纳米硅粉含量为0.05 g时,在100 mA/g的条件下测试得到Si/C纳米纤维材料的首次放(充)电比容量为853 mA·h/g (541.5 mA·h/g),循环20次后比容量还能保持543.6 mA·h/g,循环保持率达99.78%,表现出较好的循环稳定性。  相似文献   

16.
《硅酸盐学报》2021,49(7):1457-1465
以天然埃洛石为前驱体,通过低温铝热还原法和自模板法合成硅纳米管,研究了结构形貌在还原过程中的维持机理及储锂性能。结果表明:在低温铝热还原过程中,天然埃洛石中的铝氧八面体有助于维持埃洛石一维纳米管状结构进而得到硅纳米管。基于埃洛石的硅纳米管作为锂离子电池负极时具有优异的电化学性能,电极首次比放电容量高达3 150.2 (mA·h)/g,50次循环后显示出1 786.0 (m A·h)/g的高容量,为商业硅材料比容量的2倍以上,采用2 A/g大电流密度循环时,电极在200次循环后比容量能够保持1 197.6 mA·h/g,远高于商业硅电极。  相似文献   

17.
采用铌钨氧化物(NWO)对SiO进行掺杂改性,并与用五氧化二铌(NO)、钛酸锂(LTO)、钛铌氧化物(TNO)改性的材料进行对比研究,分别记为SiO@NWO、SiO@NO、SiO@LTO、SiO@TNO。利用X射线衍射仪对改性后的材料进行测试。结果表明,SiO的首次放电比容量为1 980.6 mA·h/g,充电比容量为891.2 mA·h/g,充放电效率为45.0%;SiO@NWO的首次放电比容量为464.0 mA·h/g,充电比容量为327.1 mA·h/g,充放电效率为70.5%,首次充放电效率显著提升。交流阻抗测试结果表明,SiO@NWO的电荷转移阻抗Rct为113.5Ω,显著小于SiO的213.7Ω,表明材料的导电性能得到提高。  相似文献   

18.
王珏  于平  付东  张晓臣  张伟君  阚侃 《精细化工》2020,37(2):257-263,289
以氧化石墨烯和Sn Cl2为原料,通过微波水热法合成了石墨烯/SnO_2复合材料(GS),以过硫酸铵为引发剂,通过吡咯在Si粉表面原位氧化聚合制备了Si@PPy(SP)包覆结构,最后通过微波水热组装法制备了石墨烯/SnO_2/Si@PPy复合材料(GSSP)。采用SEM、TEM、XRD、Raman和BET对GS、SP和GSSP材料的形貌和结构进行表征,并以GSSP复合材料为负极组装半电池进行倍率、循环、CV和EIS等电化学性能测试。结果表明,GSSP复合材料具有优异的倍率性能,在100 mA/g电流密度下,放电和充电的平均比容量分别为948.44和869.63 mA·h/g。1000 mA/g电流密度下,经过400次循环放电和充电的比容量保持率高达90.69%和89.34%。  相似文献   

19.
将天然石墨、酚醛树脂和微米级硅粉进行球磨处理制备复合材料前驱物,再于N2气氛下700℃炭化得到硅/石墨/炭(Si/G/C)复合电极材料,采用X射线衍射仪、扫描电镜和透射电镜及电化学循环充放电对其形貌、结构及其电化学性能进行表征.结果表明,Si/G/C作为锂离子电池负极材料具有高于900 mA·h/g的可逆比容量,40次循环后保持在550 mA·h/g.对电极进行热处理后,其循环性能显著提高,40次循环后比容量保持在700 mA· h/g.扫描电镜分析结果显示,热处理后集流体上电极材料分布更均匀,因涂抹不均形成的空隙不复存在.热处理后电极结构更致密、内部黏结强度增大使其结构稳定性明显提升,是电极循环性能提高的主要原因.  相似文献   

20.
通过溶胶–凝胶法与热处理相结合的方法合成了锂离子电池核壳结构Si/SiO_x纳米复合负极材料,采用X射线衍射、扫描电镜、透射电镜、红外光谱分析了复合材料的结构,采用恒流充放电和电化学工作站测试材料的电化学性能。结果表明:纳米Si粒子表面被SiO_x包覆,形成了具有核壳结构的Si/SiO_x纳米复合材料。其中纳米Si粒子粒度为80~100nm,SiO_x厚度为15~19nm。合成Si/SiO_x纳米复合材料的首次放电容量达1093mA·h/g,经过100次循环后容量仍超过430mA·h/g,表现出良好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号