首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热压烧结法制备A12O3/TiAl复合材料,研究了不同A12O3体积分数对A12O3/TiAl复合材料的相对密度、弯曲强度、断裂韧性以及耐磨性的影响.研究结果表明,掺入20%A12O3时,复合材料的相对密度达到最小,随着烧结温度的不断升高,A12O3/TiAl复合材料的相对密度不断增加.当A12O3含量为15%时,弯曲强度与断裂韧性达到最佳,其值分别为865.9Mpa和17.60MPam1/2.随A12O3体积分数的增加,A12O3/TiAl复合材料的摩擦系数不断增加,而磨损失重则呈先降低后增大的变化趋势,当A12O3含量为15%时,在不I司载荷作用下,材料的磨损失重均最小.  相似文献   

2.
Al2O3纤维增强钛酸铝陶瓷   总被引:3,自引:0,他引:3  
介绍了一种Al2O3纤维增强钛酸铝陶恣复合材料,在一定范围内随着Al2O3纤维含量的增加,复合材料的抗弯强度和断裂韧性均提高,当Al2O3纤维含量达到4.5%(体积分数)时抗弯强度和断裂韧性达到最大值,使钛酸铝基体材料分别提高近120%和75%。  相似文献   

3.
以α-Al2O3、Zr O_2、Ce O_2粉体为原料,在1 550℃烧结制备了含有10%(体积分数)、20%、30%的ZrO_2–CeO_2[Ce O_212%(摩尔分数),Zr O_288%]增韧Al2O3陶瓷样品。分析了样品相对密度、硬度、抗弯强度及断裂韧性。结果表明,在1 550℃烧结条件下制备的30%ZrO_2–CeO_2增韧Al2O3陶瓷样品致密度只有97.5%,而在1 600℃烧结时,致密度达到99.6%。在1 550℃烧结时,Zr O_2增韧Al2O3陶瓷材料都残留少量m-Zr O_2,而在1 600℃烧结时,样品中m-Zr O_2完全转化为t-Zr O_2,随着Zr O_2含量增加,材料致密度、硬度及断裂韧性均有所降低,弯曲强度先上升后下降。用Al2O3陶瓷刀具材料高速切削灰铸铁时,发现添加10%ZrO_2–CeO_2增韧Al2O3陶瓷样品的切削性能优于其它材料。在1 550℃烧结制备的10%、20%和30%ZrO_2–CeO_2增韧Al2O3陶瓷样品的主要磨损机理都为磨粒磨损与黏结磨损,而1 600℃烧结制备的30%ZrO_2–CeO_2增韧Al2O3陶瓷样品的主要磨损机理为磨粒磨损。  相似文献   

4.
通过机械搅拌和超声分散制备了纳米Al2O3填充聚四氟乙烯(PTFE)复合材料。研究了Al2O3用量、表面改性等因素对复合材料密度、硬度、力学性能、摩擦磨损等性能的影响。结果表明:当改性Al2O3的质量分数小于5%时,复合材料的拉伸强度、硬度要高于相同用量未改性Al2O3填充的复合材料;对改性Al2O3,当其质量分数为1%和9%时,复合材料的磨耗量较纯PTFE分别下降了55倍和286倍,而对未改性Al2O3,当其质量分数为1%和9%时,复合材料的磨耗量较纯PTFE分别下降了7倍和420倍;复合材料的密度与Al2O3的用量,表面是否经KH560改性关系不大;复合材料的摩擦因数随Al2O3用量的增加先减小后增大,对未改性Al2O3,当其质量分数为1%时,复合材料具有最低摩擦因数,而对于改性Al2O3,当其质量分数为3%时,复合材料具有最低摩擦因数。  相似文献   

5.
以Ti粉、Al粉和CuO粉为原料,通过真空热压烧结工艺合成了Al2O3-Al6.1Cu1.2Ti2.7/TiAl复合材料,采用XRD、SEM及力学性能万能实验机分析研究了材料的相组成、微观结构及力学性能.结果表明:经过1000 ℃下热压2 h所得样品反应完全,复合材料基体主要由Al6.1Cu1.2Ti2.7与TiAl双相组成,Al2O3颗粒弥散分布于基体晶粒间.当原料配比中CuO含量为10wt%时材料弯曲强度达到最大值273.1 MPa;当CuO含量在14wt%时复合材料断裂韧性达到最大值6.7 MPa·m1/2.由于CuO的掺杂量增加,热压所得复合材料基体相组织呈现从块体到层状结构变化,自生Al2O3相呈现出由弥散分布到局部团聚现象变化.  相似文献   

6.
采用喷雾技术,通过VARTM工艺制备了微米Al2O3层间增韧环氧树脂/碳纤维复合材料,研究了微米Al2O3面密度对改性复合材料II型层间断裂韧性的影响,并进一步分析了改性对复合材料弯曲、冲击等性能的影响。研究结果表明,微米Al2O3的加入明显改善了复合材料的II型层间断裂韧性,当面密度为15 g/m2时,改性效果最好,II型层间断裂韧性由348 J/m2增加至522 J/m2,其增韧机理与裂纹的偏移、大量微裂纹的形成、Al2O3粒子从基体中拔出及与基体脱粘等现象有关。此外,改性复合材料的冲击性能得到了较好的改善,弯曲性能则稍有提高。  相似文献   

7.
烧结工艺对Ti/Al2O3复合材料性能的影响   总被引:1,自引:0,他引:1  
王志  许坤  李宏林  孙卫华 《硅酸盐通报》2005,24(6):18-20,55
利用放电等离子烧结技术探讨了烧结工艺对40%(体积分数)Ti/Al2O3复合材料性能的影响。实验结果表明,复合材料的性能受烧结温度的影响最为显著,过度延长保温时间会使晶粒发生异常长大,材料性能降低。烧结温度1300℃,保温时间8min制备的复合材料力学性能最佳,其弯曲强度、断裂韧性、显微硬度和相对密度分别为1002.22MPa,19.73MPa·m1/2,18.14GPa和99.74%。  相似文献   

8.
PTFE/Al2O3纳米复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
利用MM—200型摩擦磨损试验机研究了PTFE/Al2O3纳米复合材料的摩擦磨损性能,并采用扫描电子显微镜观察、分析了试样磨屑形状及磨损机理。结果表明,经表面处理的纳米Al2O3能明显提高PTFE的耐磨损性并改变其磨屑形成机理;当表面处理纳米Al2O3含量为3%时,PTFE纳米复合材料的磨损量最小,但在试验范围内,表面处理纳米Al2O3含量变化对PTFE纳米复合材料的耐磨损性影响不大,而PTFE纳米复合材料的摩擦系数则随表面处理纳米Al2O3含量增加而略有增大,导致PTFE磨损的机理主要是粘着磨损。  相似文献   

9.
以α-Al2O3和TiB2为主要原料,采用真空热压烧结工艺制备机床用Al2O3/TiB2复相陶瓷刀具材料。测试和分析了烧结样品的相对密度、弯曲强度、断裂韧性、硬度值、相组成以及显微结构。结果表明,当α-Al2O3添加量为75 wt%,微米TiB2添加量为20 wt%时,所制备的Al2O3/TiB2复相陶瓷刀具材料性能最佳,其相对密度值为98.8%,弯曲强度为606.25 MPa,断裂韧性为4.85 MPa·m1/2,硬度值为26.55 GPa。最佳样品的主晶相为刚玉(Al2O3)和硼化钛(TiB2),次要晶相为氧化钇(Y2O3)。  相似文献   

10.
纳米Al2O3/PTFE复合材料的制备及其力学性能   总被引:2,自引:0,他引:2  
以纳米Al2O3为填料,制备了纳米Al2O3填充PTFE复合材料,研究了纳米Al2O3的含量对PTFE复合材料性能的影响。结果表明,纳米Al2O3的加入使PTFE的拉伸强度和断裂延伸率有所下降,硬度增加;当Al2O3的质量分数为10%时,PTFE复合材料的综合力学性能最佳,随着Al2O3含量的逐渐增加,会使PTFE复合材料从韧性材料向脆性材料转化。  相似文献   

11.
以硅烷偶联剂改性的氧化铝为导热填料,聚酰亚胺改性环氧树脂为基体,通过高温模压法制备了Al2O3填充聚酰亚胺/环氧导热玻纤复合材料,研究Al2O3和聚酰亚胺含量对复合材料热性能、力学性能和介电性能的影响。结果表明,复合材料的热导率随着纳米Al2O3粒子含量的增加而增加。当Al2O3粒子的填充量为50%时,复合材料的热导率可达1.239W/(m.K)。复合材料冲击强度和弯曲强度随粒子含量的增加呈先增加后降低趋势,当Al2O3粒子的填充量为20%时,材料的冲击强度为376.3kJ/m2,弯曲强度为912.6MPa。聚酰亚胺改性的复合材料具有较好的介电性能、热稳定性和耐热老化性。  相似文献   

12.
选择粒径为15μm鳞片石墨(FG)和3μm Al2O3混杂导热填料,采用新型同向非对称双螺杆挤出机,当Al2O3质量分数为20%时,改变FG的质量分数,制备PP/FG/Al2O3导热复合材料,研究混沌混合加工对导热复合材料性能的影响。结果表明,随着FG含量的增加,导热复合材料的拉伸强度和弯曲强度均呈现先增大后减小的趋势,而断裂伸长率、冲击强度逐渐减小,弯曲弹性模量逐渐增大,加工流动性能变差。当FG质量分数为40%时,导热复合材料的拉伸强度和弯曲强度有最大值,分别为32.76,46.88 MPa;抵抗热变形能力和热稳定性能逐渐提高,热导率逐渐增大。当FG质量分数为50%时,维卡软化温度提高7.2℃,负载变形温度提高38.6℃,最大分解速率温度提高13.7℃,热导率是未填充FG的6.6倍、纯PP的7.9倍。制备的导热复合材料具有优异的力学、耐热、导热性能。  相似文献   

13.
周宏霞  王明明 《粘接》2012,(11):52-55
分别采用氮化硼(BN)、氧化铝(Al2O3)和复配BN/Al2O3作为导热填料制备环氧树脂导热复合材料。结果表明,环氧树脂热导率随导热填料用量的增加而增大;同等用量下,BN/Al2O3/环氧树脂复合材料的导热性能均优于BN/环氧树脂和Al2O3/环氧树脂。当BN/Al2O3质量分4~50%[m(BN)/m(Al2O3)=3/1J,复合材料热导率为08194W/mK。此外,随BN/Al2O3用量的增加,环氧树脂的介电常数和介电损耗角正切增加,而弯曲强度和冲击强度则先增加后降低。  相似文献   

14.
采用氮气保护热压烧结工艺制备Al2O3/LiTaO3(简称ALT)陶瓷复合材料,系统研究了其微观组织和力学性能。ALT陶瓷复合材料的相对密度比烧结纯LiTaO3陶瓷的高得多,表明Al2O3起到烧结助剂的作用。TEM观察表明,Al2O3p分布均匀,两者结合紧密,界面上有非常微量的分解物。ALT陶瓷复合材料的力学性能均随Al2O3p含量的增加而提高,Al2O3p的体积分数为40%时,其各项力学性能都是最高。  相似文献   

15.
将ZrB2和ZrO2添加入到Al2O3基体中,采用熟压法制备了Al2O3/ZrB2/ZrO2复合陶瓷材料,ZrB2和ZrO2的体积含量分别为(92.2±0.1)%和(7.8±0.1)%.对复合材料的硬度、断裂韧性和抗弯强度进行了测试和分析.结果表明:当ZrB2/ZrO2体积分数为20%时,所制备的复合陶瓷的综合力学性能最优,其相对密度,抗弯强度和断裂韧度分别达到96.3%,520.5MPa和6.1 MPa·m1/2.Al2O3/ZrB2/ZrO2复合陶瓷断面的断裂模式为沿晶断裂和穿晶断裂混合模式.通过高温氧化试验发现Al2O3/ZrB2/ZrO2复合材料在500~700℃时开始氧化.  相似文献   

16.
研究了采用高能球磨工艺与热压烧结方法制备的TiAl/ZrO2陶瓷基复合材料的工艺条件、力学性能和微观结构。结果表明:TiAl质量分数为40%时,材料的致密度、维氏硬度、室温抗弯强度、断裂韧性分别达99%、13.7GPa、261.2MPa、3.2MPa·m1/2。大量穿晶断裂导致复合材料韧性较低。  相似文献   

17.
用插层聚合法制备了不饱和聚酯(UPR)/丙烯酸酯封端聚氨酯(ATPU)/改性蒙脱土(OMMT)复合材料,探讨了ATPU和OMMT对复合材料的性能和形态的影响。结果表明,随着ATPU用量的增加,复合材料的冲击强度迅速提高,但复合材料的拉伸强度、弯曲强度、巴氏硬度和热变形温度降低;当OMMT少于质量分数3%时,UPR的冲击强度、拉伸强度和弯曲强度随OMMT用量的增大而提高,超过质量分数3%时,复合材料的冲击强度、拉伸强度和弯曲强度都下降。当OMMT和ATPU的用量分别为质量分数3%和15%时,拉伸强度提高约50%,而冲击强度和弯曲强度分别提高约8.6%和10.3%,热变形温度提高了12.5℃,收缩率降低了78%。  相似文献   

18.
以纳米Al2 O3 为填料 ,制备了纳米Al2 O3 填充PTFE复合材料 ,研究了纳米Al2 O3 的含量对PTFE复合材料性能的影响。结果表明 ,纳米Al2 O3 的加入使PTFE的拉伸强度和断裂延伸率有所下降 ,硬度增加 ;当Al2 O3 的质量分数为10 %时 ,PTFE复合材料的综合力学性能最佳 ;随着Al2 O3 含量的逐渐增加 ,会使PTFE复合材料从韧性材料向脆性材料转化  相似文献   

19.
采用真空热压烧结工艺制备了Al2O3/Ti(C,N)/ZrO2纳微米复合陶瓷工模具材料。用扫描电镜观察了其断口形貌和微观结构。分析了纳米ZrO2含量对复合材料力学性能和微观结构的影响。结果表明:当ZrO2体积分数为10%时,其抗弯强度、断裂韧性、硬度分别达到625MPa、8.58MPa·m^1/2。和16.37GPa。  相似文献   

20.
尼龙6/纳米A12O3复合材料与铜摩擦副的摩擦磨损性能   总被引:5,自引:1,他引:4  
采用双螺杆挤出机共混制备尼龙6/纳米Al2O3复合材料,考察了复合材料的硬度及与铜摩擦副的摩擦磨损性能。试验表明,加入纳米Al2O3可使尼龙6的硬度提高。在低载荷时,复合材料的摩擦系数随载荷的增加而减小;当载荷超过一定值后,摩擦系数增大;载荷一定时,摩擦系数随纳米A120,含量的增加呈上升趋势。当纳米Al2O3含量达到10份时,复合材料的磨损量较小;当纳米Al2O3超过10份时,纳米Al2O3粒子的团聚会造成其与基体尼龙6的结合力降低,最终导致尼龙6/纳米Al2O3复合材料磨损量增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号