首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以空调转接头塑料制品为例,结合正交实验,以翘曲量为评价指标,研究模具温度、熔体温度、保压压力、保压时间等注塑工艺参数对制品翘曲变形的影响,运用极差法对正交实验结果进行分析,得到各工艺参数对翘曲变形影响的主次程度,最终获得最优工艺参数组合,即模具温度60℃,熔体温度240℃,保压压力35 MPa,保压时间15 s,在此工艺组合下的翘曲量为0.092 1 mm。  相似文献   

2.
为了降低翘曲变形对壁厚塑件质量的影响,利用注塑仿真对塑件进行模拟,并结合正交试验的直观分析和方差分析方法对注塑工艺参数进行优化。结果表明,当模具温度70℃、熔体温度220℃、保压压力为注射压力的120%、冷却时间15s、保压时间30s及注射时间4s时,塑件翘曲量最小,熔体温度对塑件翘曲影响最大,模具温度对翘曲影响最小。  相似文献   

3.
基于Moldflow的注射器翘曲分析   总被引:7,自引:0,他引:7  
周大路  何柏林  李树桢  黄薇 《塑料》2007,36(2):95-98
利用Moldflow软件对注射器塑料件的翘曲原因进行分析,并采用正交试验设计方法(单参数变动实验)对保压压力、熔体温度、模具温度、冷却时间等进行分析。经分析后得出影响制品翘曲变形的最主要因素是保压压力,其次则是熔体温度、模具温度、冷却时间。模拟得到本例最优成型参数分别为,模具温度35℃、熔体温度240℃、保压压力100MPa、保压时间17s、冷却时间20s。  相似文献   

4.
以薄壁壳体为研究对象,基于Moldflow软件对薄壁特征翘曲变形进行正交试验仿真分析,对比实验方案及优化方案,并进行试验验证。结果表明:通过正交试验的优化分析,对翘曲变形显著性影响因素依次为保压压力,模具温度,熔体温度,保压时间,注射时间。优化工艺参数组合为模具温度80℃,熔体温度230℃,注射时间1 s,保压时间8 s,保压压力140%,基于优化数据的试制样件质量较高,对于相关注塑模具的设计制造具有指导和应用意义。  相似文献   

5.
在Moldflow模拟分析的基础上,通过正交试验研究了熔体温度、模具温度、注射时间、保压压力、保压时闻和冷却时间等工艺参数对带金属嵌件的手机外壳注塑成型翘曲变形的影响,并优化了成型工艺.结果表明,保压时间和保压压力对翘曲变形的影响最大,最佳工艺组合为:熔体温度310℃,模具温度120℃,注射时间0.3 s,保压压力14...  相似文献   

6.
利用CAE及Moldflow软件对烟雾报警器外壳模型进行浇注系统以及冷却系统的建立,基于正交试验与CAE模拟技术对烟雾报警器外壳模型进行翘曲优化分析,产品的翘曲变形主要由于收缩不均引起,初始翘曲变形量为0.572 0 mm。各工艺参数对翘曲变形量的影响程度最大的为溶体温度,其次为保压压力、保压时间、冷却时间,最小为模具温度。在熔体温度220℃、模具温度60℃、保压压力140 MPa、保压时间10.0 s、冷却时间30 s的工艺参数设置下,产品翘曲变形量为0.183 0 mm,翘曲变形量最小,与初始翘曲变形量相比降低68.01%,产品精度显著提高。  相似文献   

7.
以某一高压固定板为研究对象,把五大因素(模具温度、熔体温度、填充时间、保压压力、保压时间)作为优化目标,制品的体积收缩率和翘曲变形作为研究目标,设计正交试验并通过Moldflow软件模拟仿真,然后对试验数据结果进行极差和方差分析,最终得到的最佳工艺参数组合为:模具温度70℃,熔体温度280℃,填充时间1 s,保压压力为注射压力的90%,保压时间12 s。再次进行Moldflow软件模拟,得到制品的体积收缩率和最大翘曲变形分别为4.824%和0.632 mm,有效地提高了制品的成型质量,对于实际应用生产具有理论指导意义。  相似文献   

8.
以薄壁塑件为对象,研究了模具温度、熔体温度、保压时间及注射压力等工艺参数对该薄壁塑件成型翘曲的影响规律,并用正交实验法优化成型工艺方案,获得最小的翘曲塑件.结果表明,熔体温度和保压时间对塑件翘曲变形影响较为显著,模具温度对塑件翘曲基本没有显著的影响.  相似文献   

9.
《塑料》2019,(5)
以膨胀箱上盖为研究对象,运用Moldflow软件进行注塑模拟,存在充填不完全、翘曲变形和体积收缩率偏大等缺陷。以模具温度、熔体温度、保压压力、注塑压力为影响因素,确定了4因素3水平的正交试验方案,基于Moldflow模拟,分析了工艺参数对翘曲变形和体积收缩率的影响。结果表明,在研究范围内,工艺参数组合对翘曲变形和体积收缩率的影响能力分别为"保压压力熔体温度模具温度注塑压力"和"熔体温度模具温度保压压力注塑压力",最优的工艺参数分别为"模具温度为40℃,熔体温度为200℃,保压压力为60 MPa,注塑压力为120MPa"和"模具温度为40℃,熔体温度为200℃,保压压力为50 MPa,注塑压力为80 MPa"。  相似文献   

10.
以衬氟阀门衬套为研究对象,根据正交试验法制定实验方案,运用Moldflow软件对衬氟阀门衬套压塑成型过程进行了数值模拟和翘曲分析。结果表明:五个工艺参数对翘曲形变影响程度为,保压压力模具温度保压时间熔体温度压缩速率。分析得出最小的翘曲工艺参数设置为保压压力11 MPa、模具温度200℃、保压时间60 s、熔体温度350℃、加压速度15 mm/s。模拟优化结果与实际生产中工艺参数的影响规律相同,采用优化后的工艺参数可以得到形状完整、成型质量好的阀门衬套。工艺参数优化模拟提高了制品的尺寸精度和使用性能,减少了生产试验次数,提高了新品试制效率,为衬套的压塑成型实际生产提供有效指导。  相似文献   

11.
高蓉菲  刘泓滨 《塑料工业》2020,48(2):79-81,91
以聚丙烯(PP)饭盒盖为研究对象,针对其在注塑过程中存在的质量缺陷问题,以翘曲变形量为优化目标,熔体温度、模具温度、保压时间、冷却时间为影响因子设计了4因素5水平的正交试验。用Moldflow软件进行仿真,对试验结果采用极差分析法,获得了使翘曲变形量最小的各因素水平,进而获得最佳工艺参数组合。其中熔体温度为275℃,模具温度为80℃,保压时间为12 s,冷却时间为45 s,优化后翘曲变形量为1. 699 mm。最佳工艺参数组合有效降低了翘曲变形量,并且发现各因素对塑件质量的影响程度为熔体温度>冷却时间>保压时间>模具温度,为实际生产提供了理论指导。  相似文献   

12.
卢松涛  王培安 《塑料科技》2020,48(2):105-111
以塑料盖作为研究对象,获得最优成型方案,预测塑件成型后的翘曲变形程度以提高塑件质量。初步提出两种注塑工艺方案加工塑料盖,使用Moldflow软件对两种方案注塑过程进行模拟对比分析,对产生翘曲缺陷的原因进行研究;利用五因素四水平的正交试验,以减小翘曲变形程度作为优化目标,优化工艺参数。模拟结果表明:方案二为最优方案,且翘曲变形主要是由收缩不均匀以及取向不均匀而造成的,翘曲变形程度最小的工艺参数组合为熔体温度250℃、模具温度60℃、保压时间12 s、冷却时间12 s、填充时间0.9 s,优化后比优化前翘曲变形程度降低9.4%左右,熔料熔接和材料性能也有所改善,塑料盖整体质量提高。实验可有效地缩短塑料盖的研发周期,降低生产成本,提高塑料盖的研发成功率。  相似文献   

13.
周峰  白耀峰 《塑料科技》2022,(1):112-116
汽车塑料油底壳密封面的法向翘曲变形量直接影响其装配和密封性能。以某玻纤增强PA6油底壳为研究对象,采用计算机辅助技术与正交试验,探究注射时间、保压压力、保压时间、熔体温度、模具温度及冷却时间对其最大密封面法向(X向)翘曲变形量的影响。对比分析单点及两点热流道进胶方案,发现两点进胶方案在流动前沿温度、注射压力和填充末端压力方面效果更好。优化工艺下X向最大翘曲变形量为0.739 9 mm,相比初始工艺降低47.1%,满足设计指标要求。实际试模产品外观及X向翘曲变形结果均合格,验证优化工艺具有可行性。  相似文献   

14.
微齿轮注射成型数值模拟及正交优化   总被引:1,自引:0,他引:1  
基于CAE软件采用正交试验设计方案对微注射成型工艺参数如模具温度、熔体温度、注射速率、保压压力、保压时间及冷却时间等与微齿轮制件质量的关系进行了数值模拟,并利用直观分析法和方差分析法对模拟结果进行了分析.结果表明,当模具温度为40℃、熔体温度为225℃、注射速率为10 cm3/s、保压压力为100 MPa、保压时间为1...  相似文献   

15.
谭安平  刘克威 《中国塑料》2019,33(11):53-59
为了预测和降低翘曲风险,在模具设计及制造前,利用Moldflow模流分析软件对产品的翘曲变形进行分析及预测。以汽车手套箱盖的翘曲变形量为质量评价目标,针对翘曲变形产生的3个主要因素(取向效应、冷却不均、收缩不均)逐一进行优化。结果表明,在模具结构方面,调整浇口位置和调整冷却系统使翘曲变形量明显降低;在工艺方面,对熔体温度、模具温度、保压压力、保压时间4个工艺参数进行正交试验,通过极差分析,得出各个工艺参数的影响程度及最佳工艺方案,对此方案进行保压曲线优化后,翘曲变形量进一步降低,形成最终方案;计算机辅助工程(CAE)数值模拟对模具设计有很强的指导性作用,可大大减少修模次数并降低模具报废的机率。  相似文献   

16.
以汽车CD托架注塑成型为例,结合生产实际问题,构建了产品CAE分析模型,运用Moldfl ow2015软件对产品材料推荐的注塑成型工艺参数进行了初步仿真,对注塑过程中的翘曲、熔接痕、气穴等缺陷成因进行了分析,并给出了质量改善优化目标,提出了一种结合Taguchi试验法、BP神经网络预测的注塑成型工艺寻优方法,并对寻优结果进行了CAE模流分析验证。结果表明,神经网络预测结果与CAE模流分析结果相近,产品翘曲量降低至1.192 mm,产品较佳的注塑成型工艺参数为:料温为225℃,模温为60℃,注塑压力为70 MPa,注塑时间为1.3 s,第一保压压力为80 MPa,第一保压时间为12 s,第二保压压力为30 MPa,第二保压时间为3 s,冷却时间为15 s,型腔随形水路C1,C2冷却水的温度均为30℃。提出的优化设计方法能有效降低模具试模成本,缩短模具生产周期。  相似文献   

17.
白杨  柳和生 《中国塑料》2009,23(5):76-79
使用正交实验法分析PP塑料熔体温度、模具温度、注射/保压压力及注射速度四个工艺参数对制品翘曲度的影响。讨论了这四个工艺参数对结晶度的影响并解释其对翘曲度的影响机理。  相似文献   

18.
基于Moldflow软件,采用正交试验和响应曲面法,对高铁橡胶外风挡注射成型的模拟方案优化设计,并对注射成型工艺参数进行研究。结果表明:模具温度是影响橡胶外风挡顶出时的体积收缩率和缩痕指数的最显著工艺因素,其次分别是熔体(胶料)温度、保压时间、保压压力、注射时间;优化的注射工艺参数为:模具温度185℃,熔体温度65℃,注射时间160 s,保压时间14 s,保压压力110 MPa。在此工艺参数下的橡胶外风挡顶出时的体积收缩率最大值为4.165%,缩痕指数最大值为5.103%。  相似文献   

19.
利用Moldflow软件对某厚壁塑料制件的注射成型过程进行分析,选取反映制品收缩与翘曲的多个评价指标,结合正交实验法,优化充填时间、熔体温度、保压时间、保压压力、冷却时间等工艺参数,通过均值分析与极差分析研究各因素对各评价指标的影响,并通过综合评分法得到一组最佳的工艺参数。结果表明,增加保压时间与保压压力能减小产品的收缩和翘曲,且得出的最佳工艺组合为注射时间为2.5 s,熔体温度为280 ℃,保压时间为130 s,保压压力为110 MPa,冷却时间为40 s,该工艺下产品的质量疏松度、体积收缩率、平面误差、翘曲分别降低了6.66 %、7.90 %、12.5 %、20.83 %,产品整体成型品质得到有效提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号