首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用臭氧强化混凝的方法对酵母废水二级出水进行深度处理,结果表明,臭氧、三氯化铁投加量分别为120 mg/L、0.5 g/L时,COD去除率为65.0%,与相同投加量下先混凝后臭氧氧化的实验结果相比,COD去除率可提高19.2%,化学污泥产生量可减少50%以上;与单独混凝实验相比,可减少60%以上的混凝剂用量。臭氧强化混凝的吨水处理费用最低,采用氧气源时,吨水处理费为2.5元,分别比先混凝后臭氧氧化和单独混凝减少0.7、1.3元/t。  相似文献   

2.
臭氧氧化对活性污泥特性的影响   总被引:2,自引:0,他引:2  
研究了对活性污泥采用臭氧处理,以考察污泥的减量效果及其对污泥特性的影响。结果表明:在臭氧投加量0.01~0.15gO3/gVSS范围内,污泥浓度显著下降、SCOD浓度迅速升高,活性污泥总悬浮固体(TSS)最大可以减少39.6%,SCOD浓度可提高60.6倍,污泥的SCOD产率为0.6739gSCOD/gVSS,同时发现,破解后的污泥活性和体积指数SVI下降;试验确定最佳臭氧投加量在0.03gO3/gVSS左右。试验结果对今后污泥减量技术的推广应用提供了理论基础。  相似文献   

3.
某农药厂利用O_3-H_2O_2取代Fe/C-H_2O_2氧化工艺对农药废水进行预处理,研究了O_3和H_2O_2投加量分别对O_3-H_2O_2和Fe/C-H_2O_2去除COD效果的影响,分析并探讨O_3-H_2O_2预处理对抑制好氧池由丝状菌导致的污泥膨胀的途径。结果表明,O_3-H_2O_2和Fe/C-H_2O_2工艺处理后出水COD浓度从33000 mg/L分别下降为11000 mg/L和5700 mg/L,Fe/C-H_2O_2预处理对COD去除效果更好;可生化性试验结果表明O_3-H_2O_2和Fe/C-H_2O_2预处理后废水B/C比分别为0.64和0.48;污泥镜检结果表明O_3-H_2O_2工艺提高废水可生化性能够有效抑制好氧池丝状菌生长,防止污泥膨胀产生。  相似文献   

4.
将活性污泥分别在14.68、30.72、43.84 mg/L 3种臭氧浓度下进行氧化,同时以纯氧曝气作为平行实验,考察臭氧尾气对活性污泥的影响。结果表明,污泥经纯氧曝气后,在反应时间内并无明显变化,但在臭氧氧化过程中,污泥ATP下降,同时上清液中COD、TP、TN上升,且臭氧浓度越高,变化速率越大,其原因为污泥发生了溶胞现象;臭氧氧化后,污泥MLSS、MLVSS减少,污泥呼吸速率下降,但沉降性得到改善,同样随着臭氧浓度的升高,变化更为显著。经14.68、30.72 mg/L臭氧氧化后的污泥,其硝化能力、生化能力与反应前并无明显差距,而经43.84 mg/L臭氧氧化后污泥的硝化能力、生化能力明显弱于反应前。  相似文献   

5.
以污泥比阻降低率和泥饼含水率为评价指标,采用Fe~0/H_2O_2类芬顿法提高污泥脱水性能,研究初始pH、Fe~0投加量、H_2O_2投加量对污泥脱水性能的影响,并探究其调理机理。结果表明,当初始pH为2. 5,Fe~0、H_2O_2投加量分别为750、20mg/g TS时,污泥比阻降低率为93. 7%,泥饼含水率为73%,零价铁回收率为98. 3%。Fe~0重复利用10次后,比阻降低率仍能保持在90%以上。类芬顿法能够有效降解污泥胞外聚合物,破坏其絮体结构,导致污泥粒径减小,并释放部分结合水,从而有效改善污泥脱水性能。  相似文献   

6.
采用中试装置,考察了NiO/Al_2O_3催化臭氧技术深度处理城市污水厂出水的可行性。结果表明,NiO/Al_2O_3催化剂加大了臭氧在水中的溶解度,并促进羟基自由基的产生,相同条件下,NiO/Al_2O_3催化臭氧化工艺对COD、DOC、NH_4~+-N、NO_3~--N的去除率分别为50.4%、49.3%、57.6%、35.1%,比单独臭氧工艺分别提高了25.7%、27.5%、46.8%、31.2%。在催化剂投加质量浓度10 g/L,臭氧投加量53.3 mg/min,水力停留时间30 min下,出水COD满足《地表水环境质量标准》(GB 3838—2002)Ⅴ类标准。NiO/Al_2O_3催化剂稳定性良好。  相似文献   

7.
根据某炼油废水二级生化出水的水质水量特点,采用臭氧催化氧化-曝气生物滤池对炼油废水生化出水进行了试验研究。考察了臭氧投加量、p H对臭氧催化氧化单元COD去除效果的影响,确定了该单元最佳臭氧投加量和最适宜pH,同时考察了pH对曝气生物滤池单元COD和NH_3-N去除效果的影响。结果显示,系统控制进水COD/O_3比=2∶1,pH在7~8,COD在150~250 mg/L,NH_3-N在21.6~59.9 mg/L的水质条件下,该系统不但能够稳定去除COD,且能够高效地去除NH_3-N,COD平均出水浓度为44.1 mg/L,NH_3-N平均出水浓度为2.07 mg/L,出水水质指标完全达到《污水综合排放标准》(GB 8978—1996)一级标准。  相似文献   

8.
通过对于污泥臭氧化过程中反应器以及反应条件的优化控制,来减少污泥溶胞过程中有机物的矿化作用。结果表明,在臭氧投加量为0.015 g O_3·(gMLSS)~(-1)时,微孔曝气处理下混合液中△SCOD达到442 mg·L~(-1),DDCOD由7.5%提升到15.22%。同时确定较低臭氧浓度处理和高污泥浓度能强化污泥溶胞有机物释放效果减少矿化损失。在臭氧投加量在0~0.007 g O_3·(gMLSS)~(-1)时,较高的进气流速对于细胞的破壁溶解效率较高。臭氧投加量超过0.010 g O_3·(gMLSS)~(-1)时较高的进气流速对溶胞产物的矿化作用逐渐加强。  相似文献   

9.
该文研究了臭氧技术应用于剩余污泥处理过程中臭氧利用率及污泥的可生化性随时间的变化,组建了臭氧氧化与序批式好氧活性污泥法结合的联合工艺。将臭氧单元处理过的污泥全部回流至曝气池与污水进行合并处理,考察了不同臭氧投加量下联合工艺中剩余污泥的产量和污水处理效果。结果表明,当处理污泥浓度为4 000 mg/L,污泥体积为3 L,臭氧进气浓度为6.5 mg/L,气量为6 L/min时,前20 min的臭氧利用率几乎为100%,随后利用率逐渐降低;污泥的可生化性先降低,而后逐渐升高,在30 min时达到最大,其后又开始下降;当臭氧投加量为0.078 kg O3/kg MLSS时,联合工艺的污泥增长率几乎为0,同时出水水质相对对照组没有明显变化。  相似文献   

10.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

11.
Jie Fan  Tao Tao  Gui-lin You 《Desalination》2009,249(2):822-827
A full scale modified A2/O process which combined pre-anoxic selector and the staging strategy treating low strength wastewater was investigated. In South China, domestic wastewater is always low in strength due to the high level of groundwater and setting of septic tank at the beginning of wastewater collection system. The results suggested that inadequate denitrification could result in deterioration of phosphorus removal. In addition, influent phosphorus concentration had effect on phosphorus removal. The pre-anoxic selector in modified A2/O process changed the distribution of nitrogen denitrified in different tanks. Characteristics of 3-stage aeration tanks were also studied. The simplified design of rectangular aeration tank could also perform as plug flow as conventional channel aeration tank. In 3-stage aeration tanks, mixed liquid suspended solid (MLSS) increased from one tank to another, while specific oxygen uptake rate (SOUR) of sludge, chemical oxygen demand (COD) and total phosphorus (TP) removal rate decreased, however ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) reaction rate remained constant. Furthermore, high MLSS concentration was not suitable for treating low strength wastewater. Waste sludge discharge could improve removal efficiency of COD, NH3-N, and TP. Without waste sludge discharge, nitrite accumulated in settler.  相似文献   

12.
《云南化工》2017,(9):31-33
针对北方冬季寒冷低温条件下,废水中COD、氮类物质降解效果低下的缺点,采用生物膜反应器脱氮组合工艺,投加一定比例悬浮性填料,在温度12℃以下进行小试研究,结果显示,HRT=18h,污泥回流比Qr=200%,混合液回流比Qr=80%,控制填料填充率在35%,曝气溶解氧控制在2~3mg/L,能够使出水中的COD、NH_3-N和TN达到国家一级A标准。  相似文献   

13.
利用自培养硝化污泥与实验室筛选的1株反硝化细菌共培养形成共生污泥,构建膜生物反应器(MBR)单一反应体系同步硝化反硝化系统,得到系统良好同步硝化反硝化曝气量和污泥浓度的最优条件。由试验结果可知:在混合污泥质量浓度(MLSS)6.0~10.0 g/L时,调节曝气量,可以使单污泥同步硝化反硝化总氮(TN)去除率达到85%以上。不同MLSS下,达到最高TN去除率的最佳曝气量随着MLSS增高而向高曝气量偏移。随着MLSS增高,响应因子F变小,由曝气量的变化而引起的TN去除率变化明显变缓,表示MLSS对O2传递的缓冲能力越强。在MLSS为8 g/L条件下,低负荷比较容易达到较高的TN去除率,而高负荷下需要更高的曝气量以获得高的TN去除率,系统适合的NH4+-N负荷范围0~0.30 kg/(m3.d)。MLSS≥3.0 g/L,出水化学需氧量(COD)低于50 mg/L,COD大部分贡献于反硝化所需C源。单一反应体系同步硝化反硝化系统能对负荷的改变作出及时的回应,整体上运行比较稳定。  相似文献   

14.
Rheological properties of sMBR sludge under unsteady state conditions   总被引:2,自引:0,他引:2  
The aim of this work is to investigate the rheological behaviour of MBR sludge for prolonged sludge retention time and during unsteady state conditions. The role of the total suspended solids and of the soluble organic matter is specifically studied through two running periods characterized by different organic loads and/or solid retention times. Diverse rheological parameters are examined. They are obtained from flow measurements carried out for an extent range of shear stress values.The obtained results show clearly that operating conditions capable of changing the total suspended solid (TSS) and soluble organic compound (COD) concentrations modify the rheological behaviour of the sludge.In comparison with the TSS concentration, the soluble organic compounds greatly affect the cohesion and the rigidity of the sludge three dimensional network. On the other hand, the COD concentration and the TSS content have equivalent quantitative influence on the rheological parameters characterizing the flow of the sludge.The results obtained are of great importance because operating conditions leading to the modification of the soluble microbial product concentration, and of the sludge rheological characteristics in the reactor, can strongly modify not only the mixing and aeration performances but also the membrane fouling of the MBR unit.  相似文献   

15.
杨春维  胡克  周音巧 《辽宁化工》2014,(9):1108-1111,1121
采用塔式SBR反应器,利用城市污水处理厂剩余污泥作为接种污泥,培养出好氧颗粒污泥。实验结果表明:好氧颗粒污泥的形成分为准备期、形成期和成熟期三个阶段。当原水COD在1 500±100 mg/L范围内波动时,其COD去除率可达93.4%,出水COD稳定,污泥浓度MLSS维持在2.0~4.0 g/L之间,半小时沉降比SV可达15%~20%,沉降性能优异。COD去除效果与污泥体积指数SVI有密切关系,当SVI维持在50~60 mL/g之间时,COD去除率可达90%以上,而当SVI高于100 mL/g,其COD去除率效果不佳,出水COD在400 mg/L以上。未经驯化的颗粒污泥对高浓度镉离子比较敏感,当氯化镉浓度为50 mg/L时,COD去除率仅为36.8%,且SVI迅速增加至112 mL/g,颗粒污泥发生解絮。而当氯化镉浓度低于1.0 mg/L时,对好氧颗粒污泥的影响较小。  相似文献   

16.
为强化厌氧-多级缺氧-好氧(A-MAO)工艺,满足GB 3838-2002的地表IV水体要求,本研究对FeCl3、Fe2(SO4)3和聚合硫酸铁(PFS)3种铁盐前置化学除磷对TP、COD的去除效果和产泥量进行研究,并考察了前置化学除磷与A-MAO工艺耦合投加量。结果表明,FeCl3和Fe2(SO4)3对TP和SS去除可达到地表IV水体要求,并明显好于PFS;FeCl3对COD的去除和产泥量最多;与FeCl3相比,Fe2(SO4)3具有较好的COD保存能力,且产泥量少。AMAO工艺使用Fe2(SO4)3前置化学除磷,导致TN含量不达GB 18918-2002要求,优化的化学生物除磷耦合投加量为130 mg/L。  相似文献   

17.
重力出流式膜生物反应器污泥浓度的优化控制   总被引:1,自引:0,他引:1  
采用重力出流式膜生物反应器(Membrane Bioreactor, MBR)工艺对生活污水进行了实验研究. 重力出流式MBR是利用液位水头重力驱动出水,整个系统结构紧凑,操作简便. 结果表明,随着污泥浓度增大(3.9~18.4 g/L),同样的曝气强度对膜表面滤饼层的剪切能力降低,膜通量下降;污泥粘度从5.4 mPa×s上升到680 mPa×s,相应的污泥中的传氧系数与清水中的传氧系数之比a从0.89降到0.10. 因此,从提高膜通量、氧传递速率和降低能耗的角度出发,将MBR的污泥浓度控制在适当范围是非常必要的. 此外,当污泥浓度大于4.8 g/L,污泥浓度的提高对有机物的去除、硝化以及反硝化速率的提高没有明显的贡献. 因此,从MBR的处理能力和运行能耗的双重影响确定MBR的最佳处理污泥浓度值为4~6 g/L,在该浓度区间,生物反应器系统对冲击负荷有较好的抵御能力,同时系统的运行能耗也较低.  相似文献   

18.
某A^2/O工艺污水厂在进水水量不足,有机物浓度低,采用活性污泥接种培养方法启动运行,通过采取投加营养源,减小曝气量和间隔进水等措施,系统成功启动,考察了在水量不足,有机物浓度低时,系统培养过程中MLSS、MLVSS、COD、TP、NH3-N等参数的变化趋势。  相似文献   

19.
某A2/O工艺污水厂在进水水量不足,有机物浓度低,采用活性污泥接种培养方法启动运行,通过采取投加营养源,减小曝气量和间隔进水等措施,系统成功启动,考察了在水量不足,有机物浓度低时,系统培养过程中MLSS、MLVSS、COD、TP、NH3-N等参数的变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号