首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
橄榄石结构的磷酸铁锂(LiFePO4)被认为是潜力巨大的锂离子动力电池的正极材料,具有理论比容量高、安全性好、循环寿命长、环境友好和原料来源广泛等优点。但是,由于其本身结构的缺陷,导致其倍率性能低下。本文阐述了近年来改善LiFePO4的倍率性能的研究,重点介绍了包覆碳导电层、掺杂金属离子、合成纳米材料、制备多孔材料等方法,其中以纳米颗粒为基本结构单元的多孔LiFePO4微米球材料倍率性能优异、体积能量密度高,具备广阔的研究和应用前景。  相似文献   

2.
水热法是一种低成本、低能耗、低污染的绿色化学合成方法,在锂离子蓄电池正极粉体材料的制备方面拥有广阔的前景。LiFePO4/C复合材料因为其高安全性,有着广泛的应用,但在水热条件下不容易获得分散性好的纳米级的LiFePO4粉体材料。本文通过研究pH值、反应温度、反应时间等影响因素对水热产物性能的影响,使用水热法制备出分散性好、电化学性能优良的LiFePO4/C纳米复合材料。  相似文献   

3.
针对改性磷酸铁锂(LiFePO4)材料作为锂离子电池正极材料的近期研究进行了综述。LiFePO4虽然以其稳定性好、安全性好、环境友好而被认为是最具有发展前景的动力锂离子电池正极材料,但固有的电子电导率和锂离子扩散系数低下导致其电化学性能较差。针对提高其电化学性能的改性研究进行综述,分析了元素掺杂、表面碳包覆、颗粒纳米化和材料复合化4种改性策略对Li Fe PO4电化学性能的影响,讨论了这4种改性策略的优缺点。分析表明,4种改性策略有效改善了锂离子扩散动力学和电子电导率,但是表面碳包覆和颗粒纳米化会降低材料的振实密度,导致能量密度低。最后,指出解决现存问题的研究方向,即开发电池性与电容性共存的改性策略将是一个可行方法。  相似文献   

4.
在水热法合成LiFePO4和HF刻蚀合成Mxene(金属碳/氮化物)的基础上,通过湿化学法制备了不同Mxene含量的Mxene/LiFePO4复合正极材料,并对其物相、形貌和电化学性能进行了研究。结果表明,Mxene纳米片在LFP颗粒中的负载,使得LiFePO4和Mxene之间通过“点到面”的导电模式在复合电极中构建高效导电网络,提高LiFePO4正极材料的电子导电性。同时,Mxene二维层状结构的特点缩短了锂离子在正极材料中的扩散路径。因此,Mxene/LiFePO4正极材料表现出良好的电化学性能,包括离子导电性和电子导电性等。其中,3%Mxene的负载,在0.1、1和5C充放电倍率下,首次放电比容量分别为159.3、136.8和100.2 m Ah·g-1,表现出良好的循环稳定性。  相似文献   

5.
陆晓挺 《粘接》2022,(2):46-48
以Li OH·H2O、FeSO4·7H2O和H3PO4为原料,采用CTAB辅助水热法合成LiFePO4/C复合正极材料。使用扫描电子显微镜(SEM)和充放电等测试技术研究了材料的形貌及倍率充放电性能。结果表明,添加0.32 g CTAB所得LiFePO4/C样品具有最好的电化学性能,在0.1C、0.2C、0.5C和1C倍率下,样品的首次放电比容量分别为143、133、113和94 (m A·h)/g。  相似文献   

6.
磷酸铁锂(LiFePO4)具有高温稳定性较好、循环性能良好、环保等特点,已成为锂离子动力电池正极材料之一。但由于磷酸铁锂电导率低及锂离子扩散速率慢等缺点,制约其在动力电池行业的发展。因此主要从包覆碳材料对磷酸铁锂进行表面改性、对磷酸铁锂进行掺杂、制备亚微米或纳米级的磷酸铁锂或制备特殊形貌的磷酸铁锂3方面进行综述,分析改善磷酸铁锂性能最优的方法,对其未来的发展趋势进行了预测。  相似文献   

7.
LiFePO4电池具有循环寿命长、安全性高、环境友好等优点,已成功应用于电子产品、电动汽车和智能电网等领域。结合LiFePO4正极材料的结构特点,综述了近年来废旧LiFePO4电极材料的预处理与回收进展,重点介绍了本课题组围绕废旧LiFePO4正极材料回收再生方面开展的研究工作,分析了不同回收方法的特点,展望其未来发展方向。  相似文献   

8.
为优化液相法一步制备磷酸铁锂(LiFePO4)技术,以七水合硫酸亚铁、磷酸二氢铵、一水合氢氧化锂为原料,通过添加十二烷基苯磺酸钠(SDBS)作为表面活性剂,采用液相水热法合成技术,一步合成了LiFePO4正极材料。研究了水热法一步合成技术对LiFePO4材料的组成、结构、形貌、粒度等的影响,通过电感耦合等离子体发射光谱仪(ICP-OES)、X射线衍射仪(XRD)、扫描电镜(SEM)、粒度分析仪等对材料进行了表征分析,并测试了材料的电化学性能。研究结果表明,合成得到的LiFePO4材料为微米级球形颗粒形貌的正交晶系非化学计量比的Li1.02Fe0.994PO4材料。电化学性能测试结果表明,在0.1C倍率下首次充、放电比容量分别为162.0、159.9 mA·h/g,库伦效率达到98.7%、倍率性能(以1C/0.1C保持率计)为92.3%,0.1C倍率循环100次容量保持率为96.4%,展现出良好的电化学性能。  相似文献   

9.
高强  吕洪  熊凡  陈飞  杨则恒  张卫新 《化工学报》2019,70(4):1628-1634
在温和的反应条件下,使用十二烷基苯磺酸钠(SDBS)成功合成了片状二水磷酸铁,并将其与氢氧化锂、柠檬酸球磨混合,采用碳热还原法制备了具有纳米厚度的片状LiFePO4/C电极材料。研究了SDBS对磷酸铁形貌以及LiFePO4/C电极材料电化学性能的影响。利用X-射线衍射、扫描电子显微镜和充放电测试等技术手段,对合成样品的物相、形貌和电化学性能进行了分析测试。电化学测试表明,在25℃,2.0~4.2 V电压范围条件下,使用片状二水磷酸铁为前驱体制备的LiFePO4/C样品,在0.1 C下放电比容量高达166.4 mA·h·g-1,且首次库仑效率达到99.6%,在1 C下循环500次容量保持率为99%,表现出了优异的电化学性能。  相似文献   

10.
锂离子电池正极材料的性能是锂电池技术发展的瓶颈。近年来,为了提高锂离子电池正极材料的循环寿命、热稳定性和倍率性能等,三氧化二铝涂覆正极材料已经被广泛研究。所讨论的三氧化二铝涂层分为粗糙涂层、超薄涂层和厚涂层。简要论述了三氧化二铝表面涂层改善正极材料的作用,如氟化氢清除剂、物理保护屏障、提高锂离子扩散速率、提升正极材料的热稳定性能、与六氟磷酸锂(LiPF6)反应生成二氟磷酸锂(LiPO2F2)和抑制JahnTeller效应等。介绍表面改性的方法,包括浸渍法、沉淀法、干法包覆、溅射法和原子层沉积法等,以及其对锂离子电池正极材料钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)及三元材料(Li-Ni-Co-Mn-O)的影响。最后,展望了三氧化二铝表面包覆和原子层沉积技术的发展前景。  相似文献   

11.
橄榄石型磷酸铁锂是目前应用十分广泛的锂离子电池正极材料之一,具有成本低、安全性高、环境友好、循环寿命长和工作电压稳定的特点。近年来,随着CTP技术、刀片电池技术等取得的突破性进展,磷酸铁锂的商业化程度得到了大幅提高。但磷酸铁锂存在电子导电性较差和离子扩散系数低的缺陷,严重限制了锂离子电池的电化学容量,因此开展磷酸铁锂制备工艺和性能强化研究对磷酸铁锂的性能提升具有重要意义。对比了磷酸铁锂电池与其他正极材料锂离子电池的性能差异和发展现状,系统总结了磷酸铁锂正极材料制备与强化的改性方法及相关研究进展与挑战,并提出了未来的发展方向与研究思路。  相似文献   

12.
曹佳宁  高翔  罗英武  苏荣欣 《化工学报》2021,72(2):1169-1180
磷酸铁锂作为锂离子电池正极材料应用广泛。目前在其电极制备中仍采用PVDF油系黏结剂体系,可用于该电极的水性黏结剂仍需进一步研究。通过反应型乳化剂共聚苯乙烯(St)与丙烯酸异辛酯(2-EHA)制备了不同结构的磷酸铁锂正极水系黏结剂PSEHA,探讨了黏结剂对电池性能的影响。PSEHA黏结剂不含不饱和双键,抗氧化性好,较低的溶胀率可以有效防止过度溶胀导致的结构破坏,而反应型乳化剂可以解决乳化剂残留问题。采用所得最优结构黏结剂制备的磷酸铁锂电极表现出优异的电化学稳定性,扣式电池1 C循环100圈后容量保留率仍有96%,而SBR仅有93.9%;软包全电池在1 C倍率下循环170圈后容量保留率仍有98.9%。该新型水性黏结剂对促进磷酸铁锂水性体系制备有重要意义。  相似文献   

13.
采用热处理方法将回收的正极片除去黏结剂,同时将LiFePO4氧化为Li3Fe2(PO43及Fe2O3并作为再生反应原料,分别以葡萄糖、一水合柠檬酸、聚乙二醇为还原剂,650℃高温反应16h、20h、24h碳热还原再生LiFePO4。测试结果表明,3个还原剂体系均能获得再生LiFePO4材料。以葡萄糖为还原剂,高温反应16h、20h、24h,放电比容量分别为118.49mA·h/g、118.38mA·h/g、123.77mA·h/g;100次循环后,容量保持率分别为88.40%、80.07%、72.56%。还原剂对再生材料性能影响显著,以葡萄糖为还原剂,再生材料的容量特性及循环性能均最优,一水合柠檬酸还原剂体系次之,聚乙二醇还原剂体系电化学性能最差。研究结果为大规模废旧LiFePO4材料再生提供一种新的途径。  相似文献   

14.
A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.  相似文献   

15.
锂离子电池磷酸铁锂正极材料的研究进展   总被引:2,自引:0,他引:2  
张克宇  姚耀春 《化工进展》2015,34(1):166-172
磷酸铁锂正极材料因其优良的电化学性能,被认为是最具应用前景的锂离子电池正极材料之一。但由于其导电率低和锂离子扩散速率慢等问题,一直制约其发展。本文阐述了磷酸铁锂的晶体结构、充放电原理以及电化学反应模型,回顾了近年来国内外对于改善磷酸铁锂的电化学性能所进行的研究,重点介绍了离子掺杂、碳包覆以及材料纳米化等改性方法对锂离子电池磷酸铁锂正极材料的影响以及目前仍然存在的问题,最后展望了该领域的发展趋势,指出继续进行深入的理论研究和进行工艺改进将是今后重点的研究方向。  相似文献   

16.
A supercritical hydrothermal method was employed to prepare sub-micrometer LiFePO4 particles with high purity and crystallinity. The structure and morphology of LiFePO4 particles were characterized by X-ray diffraction and scanning electron microscope. The electrochemical tests were carried out to determine the reversible capacity, rate and cycling performance of the LiFePO4 particles as cathode material for lithium ion battery. Experimental results show that solvent and calcining time have significant effects on purity, size and morphology of LiFePO4 particles. Mixed solvent contained deionized water and ethanol is conducive to synthesize smaller and more uniform particles. The size of LiFePO4 particles as-prepared is about 100-300 nm. The specific discharge capacities of the LiFePO4 particles are 151.3 and 128.0 mA. h. g-1 after first cycle at the rates of 0.1 and 1.0 C, respectively. It retains 95.0% of the initial capacity after 100 cycles at 1.0 C.  相似文献   

17.
Nano-LiFePO4/C cathode materials were synthesized by a PVB-based rheological phase method, followed by calcination at 550 °C for 10 h in argon. Simultaneous thermogravimetric-differential scanning calorimetry analysis indicates that the crystallization temperature of LiFePO4 is about 436 °C. In the process of heat treatment, the decomposition of polyvinylbutyral coats carbon on the synthesized LiFePO4 particles in situ. The resulting LiFePO4 powders with fine particle sizes and homogeneous carbon network connection were observed by using scanning electron microscopy and transmission electron microscopy. Electrochemical measurements show that the LiFePO4/C composite cathode delivers a large discharge capacity of 162.3 mAh·g− 1 at the 0.1 C rate, and exhibits a favorable capacity cycling maintenance at lower charge and discharge rate such as 0.5 C rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号