首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

2.
A strategy for improving the specific stiffness of silicon carbide (SiC) ceramics by adding B4C was developed. The addition of B4C is effective because (1) the mass density of B4C is lower than that of SiC, (2) its Young’s modulus is higher than that of SiC, and (3) B4C is an effective additive for sintering SiC ceramics. Specifically, the specific stiffness of SiC ceramics increased from ~142 × 106 m2?s?2 to ~153 × 106 m2?s?2 when the B4C content was increased from 0.7 wt% to 25 wt%. The strength of the SiC ceramics was maximal with the incorporation of 10 wt% B4C (755 MPa), and the thermal conductivity decreased linearly from ~183 to ~81 W?m?1?K?1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 25 wt% B4C were ~690 MPa and ~95 W?m?1?K?1, respectively.  相似文献   

3.
《Ceramics International》2019,45(16):19771-19776
High-purity SiC materials have been used in semiconductor processes due to their excellent properties. However, they are difficult to densify without sintering aids. In this work, dense and high-purity SiC ceramics have been obtained by pressureless solid-state-sintering with ultra-low contents of sintering additives. The amount of residual B, C and O in the high-purity SiC ceramics was less than 0.15 wt%, respectively, and the total content of other impurity elements (such as aluminum, magnesium, calcium, iron, etc.) was less than 0.015 wt%. Finally, the purity of the as-prepared SiC ceramics was more than 99.5 wt%.  相似文献   

4.
《Ceramics International》2022,48(8):11124-11133
A series of rare-earth-tantalate high-entropy ceramics ((5RE0.2)Ta3O9, where RE = five elements chosen from La, Ce, Nd, Sm, Eu and Gd) were prepared by conventional sintering in air at 1500 °C for 10 h. The (5RE0.2)Ta3O9 high-entropy ceramics exhibit an orthogonal structure and sluggish grain growth. No phase transition occurs in the test temperature of 25–1200 °C. The thermal conductivities of all (5RE0.2)Ta3O9 ceramics are in the range of 1.14–1.98 W m?1 K?1 at a test temperature of 25–500 °C, approximately half of that of YSZ. The sample of (Gd0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9 exhibits a low glass-like thermal conductivity with a value of 1.14 W m?1 K?1 at 25 °C. The thermal expansion coefficient of (5RE0.2)Ta3O9 ceramics ranges from 5.6 × 10?6 to 7.8 × 10?6 K?1 at 25–800 °C, and their fracture toughness is high (3.09–6.78 MPa·m1/2). The results above show that (5RE0.2)Ta3O9 ceramics could be a promising candidate for thermal barrier coatings.  相似文献   

5.
Wave conversion materials with high thermal conductivity are necessary for high-power semiconductor lighting. Ceramics have higher thermal conductivity than existing matrices such as resin or glass in which phosphor particles are dispersed. However, the high densification of ceramics generally requires high-temperature sintering, which degrades and alters the phosphor particles. In this study, we aimed to achieve the high densification of MgO ceramics at room temperature. Applying high hydrostatic pressure with water addition improved the sample packing ratio and promoted the formation of Mg(OH)2. As a result, the relative density was ≥95%. Additionally, various nitride phosphor particles (CaAlSiN3:Eu2+, β-SiAlON:Eu2+, and α-SiAlON:Eu2+) were dispersed in the MgO matrix at room temperature without degrading the luminescence property. The thermal conductivity of the obtained sample was about 8 W m?1K?1, 40 times higher than that of the epoxy matrix.  相似文献   

6.
The effects of B4C content on the specific stiffness and mechanical and thermal properties of pressureless-sintered SiC ceramics were investigated. SiC ceramics containing 2.5 wt% C and 0.7–20 wt% B4C as sintering aids could be sintered to ≥ 99.4% of the theoretical density at 2150 °C for 1 h in Ar. The specific stiffness of SiC ceramics increased from 136.1 × 106 to 144.4 × 106 m2‧s−2 when the B4C content was increased from 0.7 to 20 wt%. The flexural strength and fracture toughness of the SiC ceramics were maximal with the incorporation of 10 wt% B4C (558 MPa and 3.69 MPa‧m1/2, respectively), while the thermal conductivity decreased from ∼154 to ∼83 W‧m−1‧K−1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 20 wt% B4C were ∼346 MPa and ∼105 W‧m−1‧K−1, respectively.  相似文献   

7.
《Ceramics International》2023,49(4):6479-6486
Thermal protection has always been an important issue in the energy, environment and aerospace fields. Porous ceramics produced by the particle-stabilized foaming method have become a competitive material for thermal protection because of their low density and low thermal conductivity. However, the study of porous ceramics for composite systems using particle-stabilized foaming method was relatively rare. Here, silica-alumina composite porous ceramics were prepared by particle-stabilized foaming method, which was achieved by tailoring the surface charges of silica and alumina through adjustment of the pH. Porous ceramics exhibited porosity as high as 97.49% and thermal conductivity (25 °C) as low as 0.063 W m?1 K?1. The compressive strength of porous ceramics sintered at 1500 °C with a solid content of 30 wt% could reach 0.765 MPa. Based on the light weight and excellent thermal insulation properties, the composite porous ceramic could be used as a potential thermal insulation material in the spacecraft industry.  相似文献   

8.
Unique properties of graphene open new opportunities for preparing composites with favorable functional capabilities. Herein, an ingenious synthesis route via re-pyrolysis process of ball-milling-induced SiC(rGO, Gx)p fillers/polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO, PVG) precursors blends is proposed to obtain structural-functional integrated SiC(rGO, Gx) bulk polymer-derived ceramics (PDCs). The introduction of SiC(rGO, Gx)p provides favorable moldability, ceramic yield and linear shrinkage. Attractively, graphene networks with more free-moving electrical-charge carriers and wider phonon-channel prominently enhance electrical and thermal conductivities of products. Particularly, SiC(rGO, G20%) bulk PDCs generated at 1300 °C own satisfactory ceramic yield (90.74%), linear shrinkage (5.00%), fracture toughness (2.07 MPa m1/2), bending strength (35.37 MPa), electrical conductivity (25.72 S cm?1) and thermal conductivity (6.72 W m?1·K?1), realizing outstanding values to the best of our knowledge. This fabrication method favors mass production of larger-sized PDCs and possess potential emerging uses.  相似文献   

9.
The intrinsic microstructure and crystalline phases of porous SiC ceramics with 5 vol% AlN–RE2O3 (RE = Sc, Y, Lu) additives were characterized by high-resolution transmission microscopy with energy-dispersive spectroscopy and X-ray diffraction. The homophase (SiC/SiC) and heterophase (SiC/junction) boundaries were found to be clean; that is, amorphous films were not observed in the specimens. In addition, ScN, YN, and LuN were formed as secondary phases. The flexural strength and thermal conductivity of the ceramics were successfully tuned using different additive compositions. The flexural strength of the ceramics improved by a factor of ~3, from 11.7 MPa for the specimen containing Y2O3 to 34.2 MPa for that containing Sc2O3, owing to the formation of a wide necking area between SiC grains. For the same reason, the thermal conductivity improved by ~56%, from 9.2 W·m?1·K?1 for the specimen containing Lu2O3 to 14.4 W·m?1·K?1 for that containing Sc2O3.  相似文献   

10.
Because they have a high application potential in the thermal management of insulation environments, high-quality hexagonal boron nitride (h-BN)-based multiphase ceramics have been highly desired. However, so far, their synthesis is still full of challenges. Here, a kind of boron nitride nanosheets (BNNSs)/glass (GS) composite ceramics was prepared by a pressureless sintering method at a lower temperature of 900 °C. Due to a tightly bonded interaction between BNNSs and GS, the formed BNNSs/GS ceramics exhibit excellent multifunction performance. They have an outstanding compressive strength in the range of 19 ∼ 64 MPa and Vickers hardness ranging from 50 to 179 HV. For the BNNSs/GS ceramics with BNNS’s filling fraction of 90 wt%, their maximum side-surface TC values are 12.01 ± 0.18 W m−1 K−1 at 25 °C and 13.64 ± 0.37 W m−1 K−1 at 300 °C, respectively. In the ultra-high frequency range of 26.5 ∼ 40 GHz, the dielectric constant values of the BNNSs/GS ceramics are primarily between 2 and 3, and the corresponding loss tangent values are < 0.3. In addition, based on the remarkable integrity of their structure, these BNNSs/GS ceramics exhibit outstanding thermal-shock stability and prominent thermal management capacity during lots of heating/cooling-testing cycles. Therefore, we believe this kind of BNNSs/GS ceramic system will have great application potential in the new-generation thermal management and/or insulation packaging fields.  相似文献   

11.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

12.
Aluminum borate porous ceramics are excellent candidates for high-temperature insulation applications. Current research on aluminum borate-based porous ceramics mainly focuses on porous ceramics made up of aluminum borate whiskers, whose low aspect ratio leads to a relatively dense porous structure; this results in porous ceramics with low porosity and relatively high thermal conductivity. In this study, we report the manufacturing of aluminum borate nanofibrous porous ceramics by an agar-based gel casting method using electrospun nanofibers with a high aspect ratio as the three-dimensional skeleton structure. We explored the effect of the alumina/boron oxide molar ratio on the microscopic morphology and crystal phase composition of the aluminum borate nanofibers and that of the sintering temperature on the micro and macro properties of porous ceramics based on the nanofibers. The results showed that aluminum borate nanofibers with an alumina/boron oxide molar ratio of 7:2 had the densest microscopic morphology, and the corresponding porous ceramics exhibited a higher porosity (91%) and lower thermal conductivity (0.11 W m?1 K?1) after sintering at 1200 °C than aluminum borate porous ceramics with aluminum borate whiskers as the skeleton. The successful synthesis of aluminum borate nanofibrous porous ceramics provides new insights into the development of high-temperature insulators.  相似文献   

13.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

14.
《Ceramics International》2023,49(6):9560-9565
Selenium is an effective dopant in skutterudite-based thermoelectric materials. It strongly influences thermal transport properties due to effective phonon scattering. This study proposes a short-term fabrication route to Se-modified CoSb3-based materials. Alloy synthesis was conducted via self-propagating high-temperature synthesis. Subsequently, pulse plasma sintering consolidated all materials. As a result, thermoelectric materials with high electrical properties homogeneity were obtained. Seebeck potential mapping showed the measured deviation of the Seebeck coefficient for all fabricated samples was between 5 and 7%. A very low thermal conductivity (1.59 W m?1 K?1, at 573 K) was achieved for the highest doped sample, and one of the lowest reported results obtained for bulk skutterudite-based thermoelectric materials ever. This resulted in a low lattice thermal conductivity (1.51 W m?1 K?1, at 573 K). This led to the highest ZT (0.27 at 623 K) for the highest doped sample.  相似文献   

15.
《Ceramics International》2022,48(14):20275-20284
The heat dissipation of the ladle permanent layer is urgent to be tackled. Periclase has good compressive strength, high fire resistance, and high chemical stability. The thermal conductivity of forsterite is only 1/3–1/4 of periclase, which is low. Thus, the periclase-forsterite lightweight heat-insulating refractories for a permanent layer of steel ladle prepared from low-grade talc powder and light burned magnesia powder made by low-grade magnesite can well satisfy the requirements of the permanent layer. In this study, the effect of raw material ratio on as-prepared refractories was systematically investigated. The results demonstrated that with the increase in talc, the bulk densities of the samples decreased from 1.73 g/cm3 to 1.46 g/cm3, the porosities increased from 42% to 58%, and the compressive strengths decreased from 49 MPa to 28 MPa; besides, the thermal conductivities decreased from 1.062 to 1.22 W m?1 K?1 to 0.496–0.61 W m?1 K?1 with the increase in forsterite. Additionally, talc promoted the formation of intercrystalline pores, and the synthesis of forsterite in the experiment was dominated by the “Template growth” mechanism.  相似文献   

16.
The efficient optimisation of radiation shielding materials (RSMs), which protect people from potential radiant threats, is highly desirable; however, it remains challenging. This study addresses the low-cost fabrication of the ceramic-based RSMs, aluminium borate-based ceramics using Bi2O3 as a novel simultaneous shielding agent and sintering promoter. The phase compositions, microstructures, sintering kinetics, and performances of the as-prepared Bi2O3 doped aluminium borate ceramics (BDABCs) are systematically researched. Finally, co-shielding tests for neutron and gamma radiation are performed. The results demonstrate that Bi2O3 can positively influence the sintering densification process of BDABCs via the evident reduction in the sintering activation energy. The migration of the Bi2O3–B2O3 liquid phase affects the pore structure, crystal morphology, and thermal conductivity of the samples. The obtained BDABCs exhibited highly reliable mechanical properties with a maximum elastic modulus and modulus of rupture of 124.3 GPa and 54.9 MPa, respectively; controllable thermal conductivity from 1.32 to 6.16 W m?1 K?1; and 12 wt% Bi2O3-doped sample (1400 °C × 3 h, 1.5 cm) shows the best radiation shielding performance, including 58.6% neutron and 26.6% γ rays. The obtained results manifest the enormous potential of BDABCs as structural materials and functional RSMs.  相似文献   

17.
《Ceramics International》2022,48(15):21832-21845
A variety of combinations of YF3 and MgF2 were used as sintering aids in the fabrication of Si3N4 ceramics via gas pressure sintering (GPS). The synergistic effects of YF3 and MgF2 on the liquid viscosity, mechanical properties, thermal conductivities, and grain growth kinetics of the Si3N4 ceramics were investigated. The results showed that appropriately adjusting the YF3/MgF2 ratio could decrease liquid viscosity, reducing the diffusion energy barrier of the solute atom and promoting mass transfer. Meanwhile, the chemical bonding strength in the grain boundary complexions formed by the metal cations also influenced grain boundary migration. Samples doped with 4 mol% YF3 and 2 mol% MgF2 achieved the lowest grain growth exponent (n = 2.9) and growth activation energy (Q = 616.7 ± 16.5 kJ mol?1) as well as the highest thermal conductivity (83 W m?1 K?1) and fracture toughness (8.82 ± 0.13 MPa m1/2).  相似文献   

18.
《Ceramics International》2023,49(15):25063-25073
A core–shell structured spherical graphite (SG)@SiC attenuating agent with a tunable silicon carbide (SiC) shell thickness was synthesized via in-situ solid-liquid reaction of SG and Si. Then, fully dense 10 wt%SG@SiC/AlN microwave attenuating composite ceramics were prepared through hot-pressing sintering, and the morphology of SG@SiC particle was well maintained. By moderately modulating the thickness of the SiC shell with relatively low complex permittivity and thermal conductivity, an effectively inhibited solid solution of SiC into AlN, weakened dipole and electron polarization, enhanced conduction loss, and an improved impedance matching, thermal conductivity and microwave loss capacity were simultaneously achieved. Thus, the SG@SiC/AlN composite exhibit excellent and impressive thermal conductivity of 63.92 W m−1·K−1 and minimum reflection loss of −34.2 dB. The outstanding performance of SG@SiC/AlN composite indicates that the composite is promising microwave attenuating ceramic with excellent thermal conduction and microwave absorption ability. This work opens up a new core–shell structure strategy for designing and developing a high-efficiency attenuating agent and microwave attenuating ceramic.  相似文献   

19.
《Ceramics International》2022,48(16):23397-23403
Searching for new oxides with low thermal conductivity and high thermal expansion coefficients (TECs) as thermal barrier coatings (TBCs) is vital for the development of highly efficient gas turbines and aeroengines. We report the densification sintering, high TECs, and low thermal conductivity of A4Ta2O9 (A = Ca, Mg) tantalates. The best sintering temperature of dense A4Ta2O9 ceramics was determined via an optical contact angle tester, and samples with a relative density of 99.8% were synthesized via spark plasma sintering (SPS). The hardness (9–10 GPa), Young's modulus (172.7–211.8 GPa) and fracture toughness (1.5–1.6 MPa m1/2) of the A4Ta2O9 ceramics are primarily affected by the bonding strength. Furthermore, we studied the thermal transport properties of A4Ta2O9. The low thermal conductivity (1.78–1.93 W m?1 K?1 at 900 °C), extraordinary phase stability, and high TECs (11.4–11.8 × 10?6 K?1 at 1200 °C) of A4Ta2O9 ceramics make them candidate TBCs with high operating temperatures.  相似文献   

20.
《Ceramics International》2023,49(13):21839-21847
This article presents a study on the manufacturing of three-phase TaSi2–TaC–SiC ceramics through self-propagating high-temperature synthesis (SHS) and their subsequent chemical conversion to TaC–SiC carbide composites during transient liquid-phase hot pressing (HP). The effect of carbon black doping, ranging from 0% to 7%, on the degree of chemical conversion, structure, mechanical, and thermophysical properties of the ceramics was investigated. Our results showed that the proportionate increase of carbide content and decrease of TaSi2 content in hot-pressed samples was achieved through carbon black doping. The increase of TaSi2 content during hot pressing led to an increase in porosity from 4.3% to 23.8%, while the density decreased from 6.3 to 4.6 g/cm3. Superior mechanical properties were obtained when SHS-powder was doped with 1.5% carbon black (HV = 15.2 GPa, KIC = 4.8 MPa × m1/2, and σbend = 331 MPa). The structure of the ceramics was characterized by a TaSi2–SiC matrix and highly dispersed TaC grains predominantly residing inside TaSi2, with the TaC–TaSi2 and TaSi2–SiC interface being incoherent, as demonstrated through TEM studies. Complete conversion of TaSi2 to TaC and SiC was achieved through 7% carbon black doping, resulting in the hot-pressed sample consisting solely of carbide grains. Two-stage hot pressing was employed to enhance the relative density of the two-phase TaC–SiC sample, resulting in ceramics characterized by HV up to 22.3 GPa, KIC up to 6.1 MPa × m1/2, σbend up to 256 MPa, and λ up to 36 W/(m × K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号