首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To lay a foundation for the feasibility exploration of laser-induced ablation-assisted machining for SiCf/SiC composites, combined with numerical simulation and experiments, the laser-induced ablation mechanism of SiCf/SiC composites was studied, and the relationship between laser parameters and ablation depth was analyzed. The laser-induced ablation products of SiCf/SiC composites mainly consisted of recrystallized 3C-SiC and amorphous SiO2, which were powdery and porous. According to the stratification characteristic, the ablation products were divided into attached smoke dust layer, sublimate recrystallization layer, heat-affected layer, and unaffected layer from the surface to the inside of the material. By adjusting the laser parameters (significant factors were the scanning speed and the scanning spacing), the depth of laser-induced ablation was adjustable and controllable. The ablation depth was greater in continuous-wave (CW) mode due to the continuous energy input. Therefore, CW laser is more suitable for generating larger and various ablation depths to match various cutting allowances.  相似文献   

2.
This work explores the potentials of SiC fiber reinforced SiC matrix composites (SiCf/SiC) with SiC coating to resist aerodynamic ablations for thermal protection purpose. A plasma wind tunnel is employed to evaluate their anti-ablation property in dissociated air plasmas. The results suggest a critical ablation temperature of SiC coated SiCf/SiC, ≈ 1910 °C, which is the highest ever reported in literatures. Benefited by ‘all-SiC’ microstructures and relative flat ablated surfaces, the SiCf/SiC is still ablation-resistant up to ≈ 1820 °C after the occurrence of ablation. This implies an excellent ablation resistance and reusability property of SiCf/SiC, which surpasses that of traditional carbon fiber reinforced composites. Finally, an ablation mechanism dominated by surface characteristic is proposed. For the SiC coated SiCf/SiC, ablation is prone to take place at surface cracks formed by thermal mismatch; while for the ablated SiCf/SiC, ablation is triggered at the exposed fiber bundles which is over-heated in the plasmas.  相似文献   

3.
To improve the oxidation resistance of SiC composites at high temperature, the feasibility of using Ti3SiC2 coated via electrophoretic deposition (EPD) as a SiC fiber reinforced SiC composite interphase material was studied. Through fiber pullout, Ti3SiC2, due to its lamellar structure, has the possibility of improving the fracture toughness of SiCf/SiC composites. In this study, Ti3SiC2 coating was produced by EPD on SiC fiber; using Ti3SiC2‐coated SiC fabric, SiCf/SiC composite was fabricated by hot pressing. Platelet Ti3SiC2 powder pulverized into nanoparticles through high‐energy wet ball milling was uniformly coated on the SiC fiber in a direction in which the basal plane of the particles was parallel to the fiber. In a 3‐point bending test of the SiCf/SiC composite using Ti3SiC2‐coated SiC fabric, the SiCf/SiC composite exhibited brittle fracture behavior, but an abrupt slope change in the strength‐displacement curve was observed during loading due to the Ti3SiC2 interphase. On the fracture surface, delamination between each layer of SiC fabric was observed.  相似文献   

4.
The poor machinability of SiCf/SiC composites greatly limits its application and promotion. The laser-induced ablation products of SiCf/SiC composites are powdery, loose and porous. Milling of laser ablated samples demonstrated that the force and heat were almost negligible when milling ablation products. Accordingly, a laser ablation pretreatment milling (LAPM) process of SiCf/SiC composites was proposed. Under the LAPM process, after the laser ablation treatment with controllable depth, the cutting allowance could be achieved in only one pass, which greatly improved the machining efficiency compared with the conventional milling process. The material removal rate was greatly improved on the premise of ensuring the machining quality. Taking the milling of tensile specimens as an example, compared with conventional milling, the total processing time of the specimen was reduced by 31.29 % by LAPM process. Therefore, LAPM provides a potential feasible process scheme for greatly improving the machinability and machining efficiency of SiCf/SiC composites.  相似文献   

5.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

6.
《Ceramics International》2015,41(7):8868-8877
The ablation properties and mechanisms (under oxyacetylene combustion) together with thermal shock behavior of SiCf/Cf/SiBCN ceramic composites were investigated. The solid ablation products are primarily amorphous SiO2 and cristobalite. The primary ablation mechanisms include fiber and ceramic matrix oxidation, evaporation of B2O3 (l) and SiO2 (l), and mechanical exfoliation. SiCf/Cf/SiBCN has a significantly low mass ablation rate and a desirable linear ablation rate. The combination of crack deflection caused by SiC and carbon fibers, fiber pull-out and debonding improves thermal shock resistance and thus leads to the absence of surface macrocracks.  相似文献   

7.
In this paper, the effect of in situ grown boron nitride nanotubes (BNNTs) and preparation temperature on mechanical behavior of PIP (Precursor Infiltration and Pyrolysis) SiCf/SiC minicomposites under monotonic and compliance tensile is investigated. In situ BNNTs are grown on the surface of SiC fibers using ball milling–annealing process. Composite elastic modulus, tensile strength, fracture strain, tangent modulus, and loading/unloading inverse tangent modulus (ITM) are obtained and adopted to characterize the mechanical properties of the composites. Microstructures of in situ grown BNNTs and tensile fracture surfaces are observed under scanning electronic microscopic (SEM). For SiCf/SiC minicomposites with BNNTs, the elastic modulus, tensile strength, and fracture strain are all lower than those of SiCf/SiC minicomposites without BNNTs, mainly due to high preparation temperature and the oxidation of the PyC interphase during the annealing process. Tensile stress–strain curves of SiCf/SiC minicomposites with and without BNNTs are predicted using the developed micromechanical constitutive model. The predicted results agreed with experimental data. This work will provide guidance for predicting the service life of SiCf/SiC composite materials and may enable these materials to become a backbone for thermal structure systems in aerospace applications.  相似文献   

8.
《Ceramics International》2023,49(18):29477-29494
Modern aviation components have higher requirements for high temperature resistance, high strength and lightweight materials, and ceramic matrix composites have superior overall performance. However, its high brittleness and anisotropy lead to a challenge for manufacturing. In order to understand the formation conditions and the evolution of surface microstructures of the Cf/SiC microgrooves processed by ultrafast laser comprehensively, we designed a single-factor experiment and performed sensitivity analysis. The experiment results showed that the pulse energy had great effects on the depth of the microgroove, and the intense ablation caused more active oxidation of SiC to occur, generating more SiO(g). However, too much pulse energy may cause the material removal mechanism to be more due to the photothermal effect rather than the plasma effect. Low repetition frequency caused a large number of laminated connections in the microgroove and the oxide gradually changed from lumpy to flocculent as the repetition frequency increased. The more scanning times, the more ablation products sputtered onto the sample surface, including unablated carbon fibers. Shallow depth and ablation residues remained in the microgroove occurred under few scanning times. Although too fast scanning speed leaded to a rapid decrease in the microgroove depth, too slow scanning speed also generated more unablated carbon fibers sputtering out of the microgrooves. The microgroove depth had the highest sensitivity to the repetition frequency, followed by the pulse energy and scanning speed. The pulse energy and scanning speed had a greater effect on the oxide layer height, the repetition frequency affected the oxide layer width, and the scanning speed affected the microgroove width significantly. According to the processing requirements and the hot spot map, the processing parameters that can be adjusted effectively will be able to be obtained.  相似文献   

9.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

10.
《Ceramics International》2020,46(9):13088-13094
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites have promising applications in aero-engine due to their unique advantages, such as low density, high modulus and strength, outstanding high temperature resistance and oxidation resistance. As SiC fibers are main reinforcements in SiCf/SiC composites, the crystallization rate and initial damage degree of SiC fibers are seriously influenced by preparation temperatures of SiCf/SiC composites, namely mechanical properties of SiC fibers and SiCf/SiC composites are influenced by preparation temperatures. In this paper, KD-II SiC fibers were woven into 3D4d preforms and SiC matrix was fabricated by PIP process at 1100 °C, 1200 °C, 1400 °C and 1600 °C. Digital image correlation (DIC) method was adopted to measure the uniaxial tensile properties of these SiCf/SiC composites. In addition, finite element method (FEM) based on representative volume element (RVE) was adopted to predict the mechanical properties of SiCf/SiC composites. The good agreements between numerical results and experimental results of uniaxial tensile tests verified the validity of the RVE. In last, the transverse tensile, transverse shear, uniaxial shear properties were predicted by this method. The predicted results illustrated that axial tensile, transverse tensile and axial shear properties were greatly influenced by the preparation temperatures of SiCf/SiC composites while transverse shear properties were not significantly various. And the mechanical properties of SiCf/SiC composites peaked at 1200 °C among these four temperatures while their values reached their lowest points at 1600 °C because of thermal damage and brittle failure of SiCf/SiC composites.  相似文献   

11.
《Ceramics International》2017,43(13):9934-9940
Continuous silicon carbide fiber–reinforced silicon carbide matrix (SiCf/SiC) composites have developed into a promising candidate for structural materials for high–temperature applications in aerospace engine systems. This is due to their advantageous properties, such as low density, high hardness and strength, and excellent high temperature and oxidation resistance. In this study, SiCf/SiC composites were fabricated via polymer infiltration and pyrolysis (PIP) with the lower–oxygen–content KD–II SiC fiber as the reinforcement; a mixture of 2,4,6,8–tetravinyl–2,4,6,8–tetramethylcyclotetrasiloxane (V4) and liquid polycarbosilane (LPCS), known as LPVCS, was used as the precursor; while pyrolytic carbon (PyC) was used as the interface. The effects of oxidation treatment at different temperatures on morphology, structure, composition, and mechanical properties of the KD–II SiC fibers, SiC matrix from LPVCS precursor conversion, and SiCf/SiC composites were comprehensively investigated. The results revealed that the oxidation treatment greatly impacted the mechanical properties of the SiC fiber, thereby significantly influencing the mechanical properties of the SiCf/SiC composite. After oxidation at 1300 °C for 1 h, the strength retention rates of the fiber and composite were 41% and 49%, respectively. In terms of the phase structure, oxidation treatment had little effect on the SiC fiber, while greatly influencing the SiC matrix. A weak peak corresponding to silica (SiO2) appeared after high–temperature treatment of the fiber; however, oxidation treatment of the matrix led to the appearance of a very strong diffraction peak that corresponds to SiO2. The analysis of the morphology and composition indicated cracking of the fiber surface after oxidation treatment, which was increasingly obvious with the increase in the oxidation treatment temperature. The elemental composition of the fiber surface changed significantly, with drastically decreased carbon element content and sharply increased oxygen element content.  相似文献   

12.
The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.  相似文献   

13.
《Ceramics International》2017,43(5):4166-4174
Unidirectional SiCf/SiC minicomposites with SiC matrix derived by polymer-impregnation pyrolysis (PIP), reinforced with SiC fibers coated with zirconium or hafnium germanate were fabricated. Microdebonding indentation tests for SiCf/SiC composites with one- and multilayered germanate interphase were performed. Interfacial shear stress depending on the number of germanate interfacial layers and morphology was determined. The microstructure of the minicomposites and indented fracture surfaces were studied by scanning electron microscopy (SEM). It was stated that an increase in the number of interfacial coatings leads to a decrease in the interfacial frictional stress in SiCf/SiC minicomposites with germanate interphases. The key factor of interphase weakening is the formation of a weak interlayer bonding within the interphase but not germanate layered crystal structure itself. Thus, bonding at the fiber/matrix boundary could be regulated by the number of layers of ZrGeO4 or HfGeO4 in the interphase zone.  相似文献   

14.
《Ceramics International》2022,48(13):18567-18578
In this study, SiC interphase was prepared via a precursor infiltration-pyrolysis process, and effects of dipping concentrations on the mechanical, high-temperature dielectric and microwave absorption properties of the SiCf/SiC/Mu composites had been investigated. Results indicated that different dipping concentrations influenced ultimate interfacial morphology. The SiC interphase prepared with 5 wt% PCS/xylene solution was smooth and homogeneous, and no bridging between the fiber monofilament could be observed. At the same time, SiC interphase prepared with 5 wt% PCS/xylene solution had significantly improved mechanical properties of the composite. In particular, the flexural strength of the composite prepared with 5 wt% PCS/xylene solution reached 281 MPa. Both ε′ and ε′′ of the SiCf/SiC/Mu composites were enhanced after preparing SiC interphase at room temperature. The SiCf/SiC/Mu composite prepared with 5 wt% PCS/xylene solution showed the maximum dielectric loss value of 0.38 at 10 GHz. Under the dual action of polarization mechanism and conductance loss, both ε′ and ε′′ of the SiCf/SiC/Mu composites enhanced as the temperature increased. At 700 °C, the corresponding bandwidth (RL ≤ ?5 dB) of SiCf/SiC/Mu composites prepared with 5 wt% PCS/xylene solution can reach 3.3 GHz at 2.6 mm. The SiCf/SiC/Mu composite with SiC interphase prepared with 5 wt% PCS/xylene solution is expected to be an excellent structural-functional material.  相似文献   

15.
《Ceramics International》2017,43(16):13075-13082
SiCf/SiC ceramic matrix composites (CMCs) are being widely used in the hot-sections of gas-turbines, especially for aerospace applications. These CMCs are subjected to surface recession if exposed to heat-corrosion. In this research, an alternative environmental barrier coating (EBC) is introduced to protect the SiCf/SiC CMC from high temperature degradation that is, Al film was deposited on the surface of SiCf/SiC CMC followed by heat-treatment in a vacuum. After that, a dense Al2O3 overlay was in-situ synthesized on the surface of CMC, and in this process the microstructure evolution of SiCf/SiC CMC was analyzed. The oxidation and thermal shock resistance were characterized, showing that the Al-modified SiCf/SiC CMC has a better oxidation resistance, because the dense Al2O3 overlay can hinder oxygen diffusion from environment. What is more, the water-quenching testes show that the Al-modified SiCf/SiC CMC has a good spallation resistance.  相似文献   

16.
The slurry and sol-gel methods were used to introduce SiC nanowires (SiCnws) into the SiCf/HfC-SiC composites. The microstructures, ablation, and bending behaviors of the SiCnws modified composites prepared by the two methods were compared. The bending strengths of the modified composites obtained by introducing SiCnws by the slurry and sol-gel methods were 224 ± 19 and 154 ± 14 MPa, respectively. The results showed that SiC fibers with chemical corrosion and thermal damage during the sol-gel process decreased the bending strength of the SiCnws-modified SiCf/HfC-SiC composites. Meanwhile, the pyrolytic carbon interface accompanying corrosion damage in the sol-gel process led to the degradation of interface function, which hindered the interface debonding and fiber sliding of the composites during the bending test. After ablation, the bending strengths of the two composites were 188 ± 19 and 50 ± 7 MPa, respectively. The bending strength retention of the modified composites fabricated by the slurry method (83.9%) was higher than that (32.5%) of the composites fabricated by the sol-gel method after ablation. As the composites fabricated by the slurry method exhibited a good ablation resistance under the oxyacetylene flame (∼2350°C).  相似文献   

17.
《Ceramics International》2022,48(17):24822-24839
Due to the excellent properties of high hardness, oxidation resistance and high temperature resistance, silicon carbide fiber silicon carbide ceramic matrix composite (CMC-SiCf/SiC) is a typical difficult-to-process material, and is a high-performance advanced material in the aerospace field. In this paper, two groups of ablation experiments (experiment 1 and experiment 2) were performed on CMC-SiCf/SiC using a dual-beam coupling nanosecond laser, and the ablation morphology was observed by confocal laser microscope. The dual-beam coupling angle of experiment 2 is obtained by experimental method. And through the method of calculation, we get the dual-beam coupling angle of experiment 1 and experiment 2. According to the dual-beam coupling ablation mechanism, based on the theoretical calculation model of non-destructive method D2-lnP0, combined with the Equivalent Diameter Calculation Method (EDCM) and Equivalent Area Calculation Method (EACM), the laser ablation threshold corresponding to different beam waist size was calculated and compared. The results show that the ablation region of CMC-SiCf/SiC surface can be divided into three parts: ablation boundary, recast layer area and SiO2 coverage area. When the pulse energy increases gradually from 300 μJ to 1500 μJ, the variation trend of hole depth is first increase, second decrease, increase again, and finally decrease. The angle between two laser beams affects the waist radius, which in turn affect the laser ablation threshold. The waist of the dual-beam coupling is elliptical, and the orifice of the ablation hole is elliptical. When the waist radius of nanosecond laser is 57 μm, the laser ablation threshold is calculated to be 3.12 J/cm2. The main factors affecting the laser ablation threshold are laser pulse repetition frequency (f), beam waist radius (ω0), laser pulse width (τ), minimum laser power (Pth), and laser wavelength (λ).  相似文献   

18.
In this research, ablation resistance of Cf-C-SiC and Cf-C-SiC-Ti3SiC2 composites, fabricated by liquid silicon infiltration (LSI) method were investigated. The infiltration process was conducted at 1500?°C for 30?min and then the samples were annealed at 1350?°C. X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) were utilized in order to investigate the phase composition and microstructure of the ablated samples, respectively. When compared with Cf-C-SiC composite, results showed that mass and linear ablation rates of Cf-C-SiC-Ti3SiC2 composite have been improved by 50% and 37.5%, respectively. The mass and linear ablations rates of Cf-C-SiC composite were reached to 23.8?mg/s and 0.096?mm/s, respectively, while these values for Cf-C-SiC-Ti3SiC2 were reached to 11.8?mg/s and 0.06?mm/s, respectively. Microscopic investigations showed that formation of protective oxide layer and its stability on the surface of MAX-containing composite are the main reasons for improvement of ablation properties. While the oxide film formed on Cf-C-SiC composite has been blown away by flame.  相似文献   

19.
SiCf/SiC composites that possess PyC or BN interface layers were fabricated and then oxidized in moist air at 1000, 1200, 1400, and 1600°C. High-resolution CT was used for capturing 3D images and quantifying the SiC phase, mesophase, and voids. The oxidation behavior and microstructural evolution of SiCf/SiC with PyC or BN interface are discussed in this study. The microstructure of the SiCf/SiC with a PyC layer was seriously damaged in moist air at high temperature, whereas the BN interface layer enhanced the oxidation resistance of the SiCf/SiC. These results are also confirmed by using XRD, oxidation mass gain, tensile testing, and SEM measurements. The results of the oxidation behavior and microstructural evolution for SiCf/SiC oxidized in dry air are also compared with the results of this study. Comparing the SiCf/SiC with a PyC interface layer, the composite with a BN interface layer oxidized in moist air exhibits a high void growth rate and a low SiO2 grain growth rate from 1000 to 1600°C. This work will provide guidance for predicting the service life of SiCf/SiC for multiscale damage rate models of materials at a local scale and will also provide guidance on the life service design of SiCf/SiC materials.  相似文献   

20.
Silicon carbide Ceramic matrix composites (SiC matrix with SiC fibers, abbreviated as SiC/SiC composites) are widely used in aerospace and energy applications due to their excellent resistance to high temperatures, corrosion, wear, and low density. However, the difficult machinability and surface oxidation of SiC/SiC composites are the main factors restricting their further application. To address these issues, this paper explores a novel method for underwater femtosecond laser ablation of SiC/SiC composites to obtain high cleanliness, low-oxidation microporous surfaces. This paper systematically analyses the changes in hole depth, material removal rate (MRR), surface morphology, and material components during underwater femtosecond laser ablation of SiC/SiC composites, and explains the formation of typical features such as induced cones, small banded pits, fiber debonding and shedding. Our work provides new research ideas for understanding the removal mechanism and surface oxidation resistance of SiC/SiC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号