首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unidirectional SiCf/SiC composites (UD SiCf/SiC composites) with excellent mechanical properties were successfully fabricated by a modified PIP method which involved the preparation of film-like matrix containing carbon layer with a low concentration PCS solution followed by the rapid densification of composites with a high concentration PCS solution. Carbon layers were in-situ formed and alternating with SiC layers in the as-received matrix. The unique microstructure endows the composites with appropriate interfacial bonding state, good load transfer ability of interphase and matrix and load bearing ability of fiber, and great crack deflection capacity, which ensures the synergy of high strength and toughness of composites. It is also found that the fiber volume fraction in the preform makes a non-negligible effect on the distribution of interphase and matrix, of which the reasonable adjustment can be utilized to optimize the mechanical properties of composites. Compared with the composites only using high concentration PCS solution, the UD SiCf/SiC composites prepared by the modified PIP method exhibit superior mechanical properties. Ultrahigh flexural strength of 1318.5 ± 158.3 MPa and fracture toughness of 47.6 ± 5.6 MPa·m1/2 were achieved at the fiber volume fraction of 30%.  相似文献   

2.
SiCf/SiC composites with BN interface were prepared through isothermal-isobaric chemical vapour infiltration process. Room temperature mechanical properties such as tensile, flexural, inter-laminar shear strength and fracture toughness (KIC) were studied for the composites. The tensile strength of the SiCf/SiC composites with stabilised BN interface was almost 3.5 times higher than that of SiCf/SiC composites with un-stabilised BN interphase. The fracture toughness is similarly enhanced to 23 MPa m1/2 by stabilisation treatment. Fibre push-through test results showed that the interfacial bond strength between fibre and matrix for the composite with un-stabilised BN interface was too strong (>48 MPa) and it has been modified to a weaker bond (10 MPa) due to intermediate heat treatment. In the case of composite in which BN interface was subjected to thermal treatment soon after the interface coating, the interfacial bond strength between fibre and matrix was relatively stronger (29 MPa) and facilitated limited fibre pull-out.  相似文献   

3.
《Ceramics International》2016,42(10):12239-12245
In this paper, unidirectional SiC fiber (SiCf) reinforced geopolymer composites (SiCf/geopolymer) were prepared and effects of fiber contents on the microstructure and mechanical properties of the composites in different directions were investigated. The XRD results showed that addition of SiCf retarded geopolymerization process of geopolymer matrix by weakening the typical amorphous hump. SiCf in all the composites were well infiltrated by geopolymer matrix, but microcracks which were perpendicular to the fiber axial direction were noted in the interface area due to the thermal shrinkage of matrix during the curing process. With the increases in fiber contents, although Young's modulus of the composites increased continuously, flexural strength, fracture toughness and work of fracture increased at first, reached their peak values and then decreased. And when fiber content was 20 vol%, the composites showed the highest flexural strength, fracture toughness and work of fracture, which were 14.2, 15.2 and 81.6 times as high as those of pristine geopolymer, respectively, indicating significant strengthening and toughening effects from SiCf. Meanwhile, SiCf/geopolymer composites failed in different failure modes in the different directions, i.e., tensile failure mode in the x direction (in-plane and perpendicular to the fiber axial direction) and shear failure mode in the z direction (laminate lay-up direction).  相似文献   

4.
SiCf/SiC composites with silicon oxycarbide (SiOC) interphase were successfully prepared using silicone resin as interphase precursor for dip-coating process and polycarbosilane as matrix precursor for PIP process assisted with hot mold pressing. The effects of SiOC interphase on mechanical and dielectric properties were investigated. XRD and Raman spectrum results show that SiOC interphase is composed of silicon oxycarbide and free carbon with a relatively low crystalline degree. The surface morphology of SiC fibers with SiOC interphase is smooth and homogeneous observed by SEM. The flexural strength and failure displacement of SiCf/SiC composites with SiOC interphase vary with the thickness of interphase and the maximum value of flexural strength is 289 MPa with a failure displacement of 0.39 mm when the thickness of SiOC interphase is 0.25 µm. The complex permittivity of the composites increases from 8.8-i5.7 to 9.8-i8.3 with the interphase thicker.  相似文献   

5.
SiC fibers reinforced SiBCN ceramic matrix composites (SiCf/BN/SiBCN composites) were synthesized by direct chemical vapor infiltration (CVI), polymer infiltration pyrolysis (PIP) or chemical vapor infiltration combined with polymer infiltration pyrolysis (CVI + PIP). It is shown that the insertion of a continuous and dense SiBCN matrix via the CVI process improves the flexural strength and modulus. Interface debonding and fiber pullout happened with 50–100 nm BN interface in CVI and CVI + PIP SiCf/BN/SiBCN composites. The relative complex permittivity was measured in X-band. Higher ε′′ values in CVI-containing composites can be observed, which can be attributed to the accumulation of C and SiC phases and a multilayer matrix. Strong electromagnetic wave attenuation ability was obtained with high dielectric loss.  相似文献   

6.
《Ceramics International》2020,46(14):22297-22306
SiC fiber-reinforced SiC matrix (SiCf/SiC) composites are promising materials for high-temperature structural applications. In this study, KD-II SiC fiber bundles with a C/Si ratio of approximately 1.25 and an oxygen amount of 2.53%, were used as reinforcement. PyC interphase, PyC-SiC co-deposition interphase I and II, with different thicknesses, and SiC matrix were deposited into the SiC fiber bundles by using chemical vapor infiltration (CVI) to form SiCf/SiC mini composites. When the thickness of the interphase is approximately 1000 nm, the ultimate tensile stress and strain of SiCf/SiC mini composites with PyC-SiC co-deposition interphase I can reach 1120.0 MPa and 0.72%, respectively, which are significantly higher than those of SiCf/SiC mini composites with a PyC interphase (740.0 MPa, 0.87%) and PyC-SiC co-deposition interphase II (645.0 MPa, 0.54%). The effect of thicknesses and types of interphase on tensile fracture behavior of mini composites and then the fracture mechanism are discussed in detail.  相似文献   

7.
SiC/SiC composites prepared by liquid silicon infiltration (LSI) have the advantages of high densification, matrix cracking stress and ultimate tensile strength, but the toughness is usually insufficient. Relieving the residual microstress in fiber and interphase, dissipating crack propagation energy, and improving the crystallization degree of interphase can effectively increase the toughness of the composites. In this work, a special SiC particles and C (SiCP +C) double-cladding layer is designed and prepared via the infiltration of SiCP slurry and chemical vapor infiltration (CVI) of C in the porous SiC/SiC composites prepared by CVI. After LSI, the SiC generated by the reaction of C with molten Si combines with the SiCP to form a layered structure matrix, which can effectually relieve residual microstress in fiber and interphase and dissipate crack propagation energy. The crystallization degree of BN interphase is increased under the effects of C-Si reaction exotherm. The as-received SiC/SiC composites possess a density of 2.64 g/cm3 and a porosity of 6.1%. The flexural strength of the SiC/SiC composites with layered structure matrix and highly crystalline BN interphase is 577 MPa, and the fracture toughness reaches up to 37 MPa·m1/2. The microstructure and properties of four groups of SiC/SiC composites prepared by different processes are also investigated and compared to demonstrate the effectiveness of the SiCP +C double-cladding layer design, which offers a strategy for developing the SiC/SiC composites with high performance.  相似文献   

8.
Alternating pyrolytic carbon/boron nitride (PyC/BN)n multilayer coatings were applied to the KD–II silicon carbide (SiC) fibres by chemical vapour deposition technique to fabricate continuous SiC fibre-reinforced SiC matrix (SiCf/SiC) composites with improved flexural strength and fracture toughness. Three-dimensional SiCf/SiC composites with different interfaces were fabricated by polymer infiltration and pyrolysis process. The microstructure of the coating was characterised by scanning electron microscopy, X–photoelectron spectroscopy and transmission electron microscopy. The interfacial shear strength was determined by the single-fibre push-out test. Single-edge notched beam (SENB) test and three-point bending test were used to evaluate the influence of multilayer interfaces on the mechanical properties of SiCf/SiC composites. The results indicated that the (PyC/BN)n multilayer interface led to optimum flexural strength and fracture toughness of 566.0?MPa and 21.5?MPa?m1/2, respectively, thus the fracture toughness of the composites was significantly improved.  相似文献   

9.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

10.
Electrospun unidirectional SiC fibers reinforced SiCf/SiC composites (e-SiCf/SiC) were prepared with ∼10% volume fraction by polymer infiltration and pyrolysis (PIP) process. Pyrolysis temperature was varied to investigate the changes in microstructures, mechanical, thermal, and dielectric properties of e-SiCf/SiC composites. The composites prepared at 1100 °C exhibit the highest flexural strength of 286.0 ± 33.9 MPa, then reduced at 1300 °C, mainly due to the degradation of electrospun SiC fibers, increased porosity, and reaction-controlled interfacial bonding. The thermal conductivity of e-SiCf/SiC prepared at 1300 °C reached 2.663 W/(m∙K). The dielectric properties of e-SiCf/SiC composites were also investigated and the complex permittivities increase with raising pyrolysis temperature. The e-SiCf/SiC composites prepared at 1300 °C exhibited EMI shielding effectiveness exceeding 24 dB over the whole X band. The electrospun SiC fibers reinforced SiCf/SiC composites can serve as a potential material for structural components and EMI shielding applications in the future.  相似文献   

11.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   

12.
《Ceramics International》2020,46(9):13088-13094
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites have promising applications in aero-engine due to their unique advantages, such as low density, high modulus and strength, outstanding high temperature resistance and oxidation resistance. As SiC fibers are main reinforcements in SiCf/SiC composites, the crystallization rate and initial damage degree of SiC fibers are seriously influenced by preparation temperatures of SiCf/SiC composites, namely mechanical properties of SiC fibers and SiCf/SiC composites are influenced by preparation temperatures. In this paper, KD-II SiC fibers were woven into 3D4d preforms and SiC matrix was fabricated by PIP process at 1100 °C, 1200 °C, 1400 °C and 1600 °C. Digital image correlation (DIC) method was adopted to measure the uniaxial tensile properties of these SiCf/SiC composites. In addition, finite element method (FEM) based on representative volume element (RVE) was adopted to predict the mechanical properties of SiCf/SiC composites. The good agreements between numerical results and experimental results of uniaxial tensile tests verified the validity of the RVE. In last, the transverse tensile, transverse shear, uniaxial shear properties were predicted by this method. The predicted results illustrated that axial tensile, transverse tensile and axial shear properties were greatly influenced by the preparation temperatures of SiCf/SiC composites while transverse shear properties were not significantly various. And the mechanical properties of SiCf/SiC composites peaked at 1200 °C among these four temperatures while their values reached their lowest points at 1600 °C because of thermal damage and brittle failure of SiCf/SiC composites.  相似文献   

13.
In this study, the amorphous C, ZrB2, and BN single-layer coatings as well as C/BN, C/ZrB2, ZrB2/BN, and C/ZrB2/BN composite coatings were prepared on SiC fibers (SiCf) by an in situ synthesis and solution impregnation–pyrolysis method. Subsequently, SiCf/SiBCN composites were fabricated by hot-pressing sintering at 1900℃/60 MPa/30 min to explore the influence of different coatings on the microstructure and mechanical performance of resulting composites. After the preparation of single-layer-coated SiCf, the SiCf(BN) or SiCf(ZrB2) tended to be overlapped with each other, whereas the dispersion of amorphous C–coated SiCf was satisfying. Besides, some uneven areas and attached particles have appeared on fiber surfaces of the SiCf(BN) or SiCf(ZrB2), whereas smooth and dense surfaces of amorphous C–coated SiCf were observed. Because the uniformity of ZrB2 coatings can be partially damaged by the subsequent coating process of BN, the composite coatings of ZrB2/BN and C/ZrB2/BN were thereby not suitable for strengthening SiBCN matrix. The SiCf/SiBCN composites with C/ZrB2 coatings have desirable comprehensive mechanical properties. Nevertheless, the conventional toughening mechanisms such as fiber pull-out and bridging, and crack deflection are not available for these composites because the serious crystallization of SiCf leading to great strength loss, resulting in catastrophic brittle fracture.  相似文献   

14.
《Ceramics International》2017,43(5):4166-4174
Unidirectional SiCf/SiC minicomposites with SiC matrix derived by polymer-impregnation pyrolysis (PIP), reinforced with SiC fibers coated with zirconium or hafnium germanate were fabricated. Microdebonding indentation tests for SiCf/SiC composites with one- and multilayered germanate interphase were performed. Interfacial shear stress depending on the number of germanate interfacial layers and morphology was determined. The microstructure of the minicomposites and indented fracture surfaces were studied by scanning electron microscopy (SEM). It was stated that an increase in the number of interfacial coatings leads to a decrease in the interfacial frictional stress in SiCf/SiC minicomposites with germanate interphases. The key factor of interphase weakening is the formation of a weak interlayer bonding within the interphase but not germanate layered crystal structure itself. Thus, bonding at the fiber/matrix boundary could be regulated by the number of layers of ZrGeO4 or HfGeO4 in the interphase zone.  相似文献   

15.
Titanium silicon carbide (Ti3SiC2) film was synthesized by molten salt synthesis route of titanium and silicon powder based on polymer-derived SiC fibre substrate. The pre-deposited pyrolytic carbon (PyC) coating on the fibre was utilized as the template and a reactant for Ti3SiC2 film. The morphology, microstructure and composition of the film product were characterized. Two Ti3SiC2 layers form the whole film, where the Ti3SiC2 grains have different features. The synthesis mechanism has been discussed from the thickness of PyC and the batching ratio of mixed powder respectively. Finally, the obtained Ti3SiC2 film was utilized as interphase to prepare the SiC fibre reinforced SiC matrix composites (SiCf/Ti3SiC2/SiC composites). The flexural strength (σF) and fracture toughness (KIC) of the SiCf/Ti3SiC2/SiC composite is 460 ± 20 MPa and 16.8 ± 2.4 MPa?m1/2 respectively.  相似文献   

16.
《Ceramics International》2022,48(7):9483-9494
In this work, quasi-isotropic chopped carbon fiber-reinforced pyrolytic carbon and silicon carbide matrix (Cf/C–SiC) composites and chopped silicon carbide fiber-reinforced silicon carbide matrix (SiCf/SiC) composites were prepared via novel nondamaging method, namely airlaid process combined with chemical vapor infiltration. Both composites exhibit random fiber distribution and homogeneous pore size. Young's modulus of highly textured pyrolytic carbon (PyC) matrix is 23.01 ± 1.43 GPa, and that of SiC matrix composed of columnar crystals is 305.8 ± 9.49 GPa in Cf/C–SiC composites. Tensile strength and interlaminar shear strength of Cf/C–SiC composites are 52.56 ± 4.81 and 98.16 ± 24.62 MPa, respectively, which are both higher than those of SiCf/SiC composites because of appropriate interfacial shear strength and introduction of low-modulus and highly textured PyC matrix. Excellent mechanical properties of Cf/C–SiC composites, particularly regarding interlaminar shear strength, are due to their quasi-isotropic structure, interfacial debonding, interfacial sliding, and crack deflection. In addition to the occurrence of crack deflection at the fiber/matrix interface, crack deflection in Cf/C–SiC composites takes also place at the interface between PyC–SiC composite matrix and the interlamination of multilayered PyC matrix. Outstanding mechanical properties of as-prepared Cf/C–SiC composites render them potential candidates for application as thermal structure materials under complex stress conditions.  相似文献   

17.
It is difficult for ceramic matrix composites to combine good electromagnetic wave (EMW) absorption properties (reflection coefficient, RC less than -7 dB in X band) and good mechanical properties (flexural strength more than 300 MPa and fracture toughness more than 10 M P·m1/2). To solve this problem, two kinds of wave-absorbing SiC fibers reinforced Si3N4 matrix composites (SiCf/Si3N4) were designed and fabricated via chemical vapor infiltration technique. Effects of conductivity on EM wave absorbing properties and fiber/matrix bonding strength on mechanical properties were studied. The SiCf/Si3N4 composite, having a relatively low conductivity (its conduction loss is about 33% of the total dielectric loss) has good EMW absorption properties, i.e. a relative complex permittivity of about 9.2-j6.4 at 10 GHz and an RC lower than ?7.2 dB in the whole X band. Its low relative complex permittivity matches impedances between composites and air better, and its strong polarization relaxation loss ability help it to absorb more EM wave energy. Moreover, with a suitably strong fiber/matrix bonding strength, the composite can transfer load more effectively from matrix to fibers, resulting in a higher flexural strength (380 MPa) and fracture toughness (12.9 MPa?m1/2).  相似文献   

18.
Single fiber-tow minicomposites represent the major load-bearing element of woven and laminate ceramic matrix composites (CMCs). To understand the effects of fiber type, fiber content, and matrix cracking on tensile creep in SiCf/SiC CMCs, single-tow SiCf/SiC minicomposites with different fiber types and contents were investigated. The minicomposites studied contained either Hi-Nicalon™ or Hi-Nicalon™ Type S SiC fibers with a boron nitride (BN) interphase and a chemical-vapor-infiltrated-silicon-carbide (CVI-SiC) matrix. Tensile creep was performed at 1200 °C in air. A bottom-up creep modeling approach was applied where creep parameters of the fibers and matrix were obtained separately at 1200 °C. Next, a theoretical model based on the rule of mixtures was derived to model the fiber and matrix creep-time-dependent stress redistribution. Fiber and matrix creep parameters, load transfer model results, and numerical modeling were used to construct a creep strain model to predict creep damage evolution of minicomposites with different fiber types and contents.  相似文献   

19.
Continuous carbon fiber (Cf) reinforced silicon carbide (SiC) matrix composite (Cf/SiC) was processed through hot pressing (HP) using polycarbosilane (PCS) in matrix and polysilazane in interphase regions as polymer binders. HP experiments were conducted at 4 MPa, 1200 °C and 1 h; followed by PCS polymer impregnation and pyrolysis (PIP) at 1200 °C under vacuum. The BN/SiC-Si3N4 interphase formed on the Cf cloth during BN dispersed polysilazane polymer coating and pyrolysis. The influence of PCS quantity during HP experiments on Cf/SiC composites was studied. Results suggest that sintering of SiC matrix in Cf/SiC composite improves by increasing PCS content during HP; however, high PCS content increases the liquidity of SiC-PCS mixture to flow out of the composite structure. The Cf/SiC composites with relative density ranging from 79 to 83% and flexural strength from 67 to 138 MPa was achieved.  相似文献   

20.
The fabrication of three-dimensional silicon nitride (Si3N4) fiber-reinforced silicon nitride matrix (3D Si3N4f/BN/Si3N4) composites with a boron nitride (BN) interphase through precursor infiltration and pyrolysis (PIP) process was reported. Heat treatment at 1000–1200 °C was used to analyze the thermal stability of the Si3N4f/BN/Si3N4 composites. It was found after heat treatment the flexural strength and fracture toughness change with a pattern that decrease first and then increase, which are 191 ± 13 MPa and 5.8 ± 0.5 MPa·m1/2 respectively for as-fabricated composites, and reach the minimum values of 138 ± 6 MPa and 3.9 ± 0.4 MPa·m1/2 respectively for composites annealed at 1100 °C. The influence mechanisms of the heat treatment on the Si3N4f/BN/Si3N4 composites include: (Ⅰ) matrix shrinkage by further ceramization that causes defects such as pores and cracks in composites, and (Ⅱ) prestress relaxation, thermal residual stress (TRS) redistribution and a better wetting at the fiber/matrix (F/M) surface that increase the interfacial bonding strength (IBS). Thus, heat treatment affects the mechanical properties of composites by changing the properties of the matrix and IBS, where the load transfer efficiency onto the fibers is fluctuating by the microstructural evolution of matrix and gradually increasing IBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号