首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
镧改性核桃壳生物炭制备及吸附水体磷酸盐性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为研发低成本的磷酸盐吸附剂,以核桃壳为原料,LaCl3为改性试剂热解制备核桃壳生物炭。通过SEM-EDS、ICP-OES、FTIR和XRD对生物炭进行表征,采用吸附等温模型和动力学模型拟合生物炭的吸磷特征,并研究热解温度、La改性浓度、添加量、初始溶液pH和共存离子对生物炭吸附磷的影响。结果表明:La改性后,生物炭表面由于负载了La2O3和LaOCl,其吸附能力明显提高。热解温度为400℃、La浸渍浓度为0.1mol/L时获得的生物炭(BC-La400),其Langmuir最大磷吸附容量为12.18mg/g,吸附过程主要受化学吸附和颗粒内扩散控制。热解温度和La改性浓度过高均不利于磷的吸附。磷初始浓度为50mg/L时,BC-La400添加量为2.7g/L可获得较理想的吸附能力,但当添加量超过4.0g/L时,磷脱除率可超过98%。BC-La400吸磷时最佳初始pH为3,CO32-共存会明显削弱BC-La400对磷的吸附能力。  相似文献   

2.
为处理含磷废水和实现农业废弃物的资源化利用,将小麦秸秆制成生物炭,通过MgCl2溶液对其进行浸渍改性,探究改性生物炭对水中磷酸盐的吸附特性。结果表明:热解温度为600℃,0.1 mol/L MgCl2溶液改性得到的小麦秸秆生物炭(WS-0.1Mg-600)在pH=7、初始磷酸盐浓度为10 mg/L时,对磷酸盐吸附效果最好;WS-Mg-600投加量为1.25 g/L时,对磷酸盐吸附量为(4.02±0.46)mg/g;WS-Mg-600吸附磷酸盐最佳pH为10。吸附过程符合拟二级动力学方程以及Langmuir模型,表明该吸附过程是以化学吸附为主,并为单层吸附。  相似文献   

3.
以松木(SM)和楠木(NM)木屑为原料,分别在300、450、600℃下制备了6种木屑生物炭,通过扫描电镜、孔径与比表面积分析仪、傅里叶红外光谱仪和热重分析仪对生物炭的理化性质进行了表征,并探讨了金属离子(Na+、K+、Ca2+)和pH值对生物炭吸附Pb2+的影响,同时研究了其吸附动力学。研究结果表明:在相同制备条件下,随着热解温度升高,生物炭的比表面积和孔容积增大,其最可几孔径呈下降趋势,楠木生物炭的比表面积(23.2~311.4 m2/g)均大于松木生物炭(17.6~210.6 m2/g);FT-IR分析表明,热解温度的升高使生物炭芳香化程度增强,有助于生物炭与Pb2+形成稳定的结构。楠木生物炭对Pb2+吸附量(46.92~77.12 mg/g)高于松木生物炭(34.90~62.79 mg/g);溶液中的Na+和K+不利于生物炭对Pb2+的吸附,Ca2+有利于Pb2+的去除。生物炭对Pb2+的吸附均符合准二级动力学方程,颗粒内扩散模型分析表明吸附受多种因素共同影响。  相似文献   

4.
四环素对水环境的污染情况日益严重,需要研究一种高效去除四环素的技术。基于此,利用ZnCl2作为活化剂活化淀粉制备多孔的生物炭材料,再用HNO3对其氧化,制备出表面含氧官能团丰富的多孔生物炭BCHNO3,当pH为5时,BCHNO3对四环素具有1 263.4 mg/g的吸附容量,吸附动力学符合Elovich模型,吸附机理主要为孔隙填充和氢键作用。  相似文献   

5.
花生壳生物炭的改性及其吸附Pb2+性能研究   总被引:1,自引:0,他引:1  
以花生壳为原料热解制备生物炭,并分别采用NaOH和KMnO4进行改性,经表征发现改性后生物炭微观结构较为疏松、孔径变小、稳定性增强,NaOH改性花生壳生物炭(AB)和KMnO4改性花生壳活性炭(MnB)的比表面积分别增至花生壳生物炭(B)的3.178倍和5.065倍,以KMnO4作为改性剂时,锰氧化物成功地固定在生物炭上,B、AB和MnB的零电荷点(pHPZC)分别为2.193、2.888和2.466。探究改性前后生物炭对Pb2+的吸附性能发现:B、AB和MnB吸附Pb2+的适宜pH值分别为4.5~6.5、5.5~6.5和5.0~6.5,达到相同Pb2+去除率时,生物炭用量MnB 2+的吸附平衡时间较B吸附Pb2+的吸附平衡时间(1 080 min)分别缩短了180和480 min。通过吸附动力学模型和等温线模型分析可知,3种生物炭吸附Pb2+的过程均受化学吸附控制,吸附速率MnB>AB>B,AB和MnB的最大理论吸附量分别是53.19和80.65 mg/g,分别提高至B的1.38倍和2.10倍。  相似文献   

6.
镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理   总被引:4,自引:0,他引:4       下载免费PDF全文
利用废弃的木薯杆制备了载镁的生物炭吸附剂。以氨氮、磷为目标污染物,采用控制变量法研究了不同镁盐改性、MgCl2浓度、碳化温度、固液比和碳化时间对氨氮、磷吸附性能的影响,制备最具吸附性能的载镁木薯秆基生物炭(Mg-BC),进行批量吸附氨氮和磷实验。利用等温模型(Langmuir和Freundlich模型)和动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)探究其吸附特性,在其吸附特性研究的基础上,运用FTIR、XRD、SEM-EDS、XPS等表征手段对其吸附机理进行探讨。结果表明,Mg-BC对氨氮和磷的吸附过程均符合Freundlich模型和准二级动力学模型,为多分子层的化学吸附,理论饱和吸附量分别为43.48 mg·g-1和96.00 mg·g-1。结合表征结果推测,Mg-BC吸附氨氮、磷主要通过官能团作用、络合沉淀和离子交换等多过程协同完成。  相似文献   

7.
通过城市污泥热解制备污泥生物炭(BC),采用FeCl_3溶液浸渍污泥生物炭后制备出磁性污泥生物炭(MBC),对比了BC与MBC去除水溶液中Cd(Ⅱ)的能力。考察溶液初始pH、吸附时间、吸附温度以及Cd(Ⅱ)初始浓度对BC和MBC去除Cd(Ⅱ)效果的影响。结果表明,BC和MBC均符合拟二级动力学吸附模型;Langmuir吸附等温模型能够更好地描述BC和MBC去除Cd(Ⅱ)的过程。在溶液初始pH为6.0,生物炭投加量为10 mg,Cd(Ⅱ)质量浓度为10~150 mg/L的溶液25 mL,吸附时间为360 min,温度为25℃的最佳条件下,BC和MBC对Cd(Ⅱ)最大的吸附量分别为76.93 mg/g和167.42 mg/g。经过5次吸附解吸试验,MBC的Cd(Ⅱ)去除率保持在90%以上,BC的Cd(Ⅱ)去除率在55%左右,说明MBC具有更好应用于去除含Cd(Ⅱ)废水的能力。  相似文献   

8.
以稻壳、竹子和杉木屑为原料,分别在不同热解温度下热解制备生物炭(DBC、ZBC和MBC)。采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线能谱(EDS)和X射线衍射(XRD)表征其理化性质,并通过批量吸附实验研究生物炭对U(VI)的吸附特性与机理。结果表明:随着热解温度升高,3种生物炭pH值和灰分增加,产率下降,且ZBC与DBC表面更加粗糙,孔状形貌更加明显,芳香结构趋于完善,含氧官能团减少,无机元素占比增加,碳纤维结晶度降低;准二级吸附动力学模型能更好地拟合3种生物炭吸附U(VI)的过程(R22>0.96),在25℃、pH值4、固液比为1:1(g:L)的条件下3 h可达到吸附平衡;3种生物炭的吸附等温线拟合更符合Langmuir模型,以化学吸附为主,ZBC700对U(VI)的理论最大吸附量为18.55 mg/g;随着热解温度的升高,ZBC和DBC吸附U(VI)的能力增强,阳离子-π和离子交换作用贡献增加。MBC吸附U(VI)的能力与热解温度关系不明显,相同热解温度,ZBC和DBC的吸附量高于MBC。  相似文献   

9.
针对水体中存在的抗生素污染现象,以小粒咖啡果壳为原料,采用限氧裂解法在500℃下制备了生物炭MCS-1,随后分别用KOH和H2SO4改性MCS-1,制得改性生物炭MCS-2和MCS-3,研究了3种生物炭对磺胺噻唑(ST)的吸附特性和吸附机理。实验结果表明:3种生物炭均具有多层级孔隙结构,与未改性生物炭MCS-1相比,MCS-2和MCS-3具有更发达的孔道结构和比表面积。3种生物炭对ST的吸附均符合准二级动力学模型和Freundlich模型,表明吸附过程主要为物理化学作用,且吸附速率主要受薄膜扩散控制。等温吸附和吸附热力学表明3种生物炭对ST的吸附是自发进行的多层吸附。在298 K时,MCS-1、MCS-2、MCS-3对ST的最大吸附量分别为0.77、1.12、0.47 mg/g;pH为2时,3种生物炭对ST的吸附量均达到最大,表明对ST的吸附适合在酸性环境下进行。碱改性后的咖啡果壳生物炭(MCS-2)对ST吸附效果较未改性的MCS-1和酸改性的MCS-3生物炭强。  相似文献   

10.
为了寻求农林废弃物的资源化利用途径和开发低成本、高效的氮磷污染物吸附剂,本研究以油茶果壳为原料,制备生物炭应用于氮磷污染物的吸附特性研究。结果表明,热解温度为300℃的油茶果壳炭孔隙结构发达,含氧官能团丰富,有利于氮磷污染物的吸附;当生物炭投加量为0.01g、NH4Cl和KH2PO4的浓度为100mg·L-1、pH值为8时,吸附效果最好,NH4+吸附量为66.9mg·g-1,PO43-吸附量为193.76mg·g-1。油茶果壳炭对氮磷污染物的吸附过程更符合准一级动力学模型和Langmuir等温模型。  相似文献   

11.
为解决水体重金属Cr(Ⅵ)的环境污染问题,以棉秆为原料制备生物炭(BC),再采用液相沉淀法将BC赋磁,得到磁性生物炭(MBC)。以二乙烯三胺(DETA)为改性试剂,对MBC进行氨基改性,制备出氨基改性磁性生物炭吸附剂DETA@MBC。用XRD、SEM、FT-IR、VSM对DETA@MBC进行表征,证实了Fe3O4成功负载在BC表面,MBC的氨基改性没有破坏Fe3O4的晶体构型,DETA@MBC表面有丰富的氨基功能团,且饱和磁强度良好。研究其作为吸附剂在不同条件下对Cr(Ⅵ)的吸附性能。结果表明,溶液pH值、吸附剂投加量、竞争性离子和温度等因素均会影响吸附效果。DETA@MBC对Cr(Ⅵ)的吸附更符合准二级动力学方程,等温吸附过程符合Freundlich模型,KF=25.287 mg(1-(1/n))·L1/n·g-1,n=2.538,吸附容易进行,对Cr(Ⅵ)的吸附为自发的吸热过程。  相似文献   

12.
为研究以病死猪以炭化焚烧法制备的肉骨生物炭对水溶液中Pb~(2+)的吸附特性,分析了吸附时间、吸附剂用量、Pb~(2+)的初始含量等因素对吸附效果的影响。结果表明,对于50 mL质量浓度400 mg/L的Pb~(2+)溶液,当溶液初始pH为5.5、肉骨生物炭投加量为200 mg、吸附时间为240 min时,肉骨生物炭对Pb~(2+)的吸附效果达到最佳,吸附量为99.37 mg/g,Pb~(2+)去除率达到99%以上。肉骨生物炭对Pb~(2+)的动力吸附过程可以由准2级动力学模型很好地拟合;Langmuir方程描述的单分子层吸附模型能更好地拟合其等温吸附过程,饱和吸附量为106.4 mg/g。相比于玉米秸秆生物炭,肉骨生物炭对Pb~(2+)有更大的吸附容量和更快的吸附速率,是性能较好的Pb~(2+)吸附材料。  相似文献   

13.
以木质素磺酸钠(LS)为原料,采用浓硫酸一步氧化碳化的方法在60℃和210℃下分别制备了木质素生物炭磺酸SLBC-60和SLBC-210。SLBC-60磺酸基、羧基和酚羟基含量分别为1.66,1.40,4.41 mmol/g,而SLBC-210磺酸基、羧基和酚羟基含量分别为0.34,3.22,5.41 mmol/g。对比评价了它们对亚甲基蓝(MB)的吸附效果,结果显示,在pH=1~10溶液中,SLBC-60对MB保持高吸附量(>463.9 mg/g)和高去除率(>91.9%),而SLBC-210对MB吸附量<231.5 mg/g、去除率<45.8%,结合生物炭结构和Zeta电位分析,这可能与SLBC-60富含磺酸基官能团及其在pH=1~10溶液中表面均富集负电荷有关;优化pH、吸附剂加入量、吸附时间等参数,得到SLBC-60对MB、罗丹明B和孔雀石绿饱和吸附量分别为755.1,926.1,1 008.2 mg/g,且吸附性能不受一价金属离子影响。此外,SLBC-60对MB的吸附等温线符合Langmuir模型(R2=0.998 9),吸附动力学符合准二级动力学方程(R2=0.998 9),吸附动力学符合准二级动力学方程(R2=0.999 5),说明该吸附以单层化学吸附为主。因此,改性制备的木质素生物炭磺酸可作为高效的阳离子染料吸附剂,有望应用于印染废水治理。  相似文献   

14.
以农业废弃物锯末为材料制备生物炭,用铁锰氧化物对锯末生物炭改性,探究某吸附As和Cd的能力与机制。结果表明,改性生物炭增大了孔径和比表面积,增加了更多的吸附点位,尤其是铁、锰、生物炭的质量比为1∶3∶15的吸附剂吸附效果最好,对于砷和镉的平衡吸附量分别增大了35倍和5倍,最大吸附量分别为7.452,17.053 mg/g。低pH环境下,Cd(2+)的吸附受到抑制,而As(2+)的吸附受到抑制,而As(3+)受pH影响较小。Cd和As吸附符合准二级吸附动力学模型,As和Cd的吸附热力学符合Langmuir模型,这表明吸附过程为单层吸附。  相似文献   

15.
《应用化工》2022,(9):1931-1935
开展了脱水污泥单独热解及其与玉米秸秆共热解(泥秆质量分别为9∶1,8∶2,5∶5)制备生物炭吸附剂的研究。采用元素分析、扫描电镜和比表面积仪对4种生物炭的理化特性及微观形貌进行了全面分析。结果表明,在相同热解温度下,随着玉米秸秆掺杂量的增加,生物炭产率及灰分含量降低,全碳含量增加,pH值略有下降,生物炭比表面积和总孔体积增大,棒状残焦分布量增多,孔结构更加发达。生物炭对Pb(2+)的吸附动力学符合准二级动力学模型,吸附过程分为快反应和慢反应两个阶段,吸附实验前10 min的吸附量达到饱和吸附量的80%以上。Dubinin-A模型较好地描述了生物炭对Pb(2+)的吸附动力学符合准二级动力学模型,吸附过程分为快反应和慢反应两个阶段,吸附实验前10 min的吸附量达到饱和吸附量的80%以上。Dubinin-A模型较好地描述了生物炭对Pb(2+)的等温吸附行为,4种生物炭对Pb(2+)的等温吸附行为,4种生物炭对Pb(2+)的饱和吸附量大小依次为:SSMT50%(44. 8 mg/g)> SS-MT20%(38. 1 mg/g)> SS-MT10%(30. 7 mg/g)> SS(21. 7 mg/g),表明污泥-玉米秸秆生物炭有作为重金属Pb吸附剂的潜力。  相似文献   

16.
采用原位沉淀法制备磁性海藻生物炭复合材料,考察复合材料对水中偶氮染料甲基橙的吸附/氧化去除效果,利用扫描电子显微镜、透射电子显微镜、傅里叶交换红外光谱、N2吸附脱附仪、X射线衍射仪和磁强计等对复合材料进行表征,考察材料投加量、H2O2投加量、pH和温度等条件对去除效果的影响。实验结果表明,复合材料孔隙发达,比表面积达到388.56 m2/g,具有超顺磁性,磁化强度为31.38 emu/g;复合材料去除甲基橙的最佳条件:材料投加量为5 mg,H2O2投加量为50μL,初始pH为3,温度为35℃。磁性海藻生物炭复合材料去除甲基橙表现出催化降解和吸附的协同作用,甲基橙的去除率可达99.4%。制备的磁性海藻生物炭复合材料具有稳定、易磁分离和重复利用性好的优点,有开发成为新型水处理剂的潜力。  相似文献   

17.
江汝清  余广炜  王玉  黎长江  邢贞娇 《化工进展》2022,41(12):6489-6499
以直接红23染料(DR23)溶液模拟印染废水,对比分析了酸改性前后猪粪生物炭对DR23的吸附特性与机理。通过静态吸附实验考察了DR23溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂添加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学和吸附等温线。研究发现,相比于未改性生物炭(PMB),酸改性后生物炭(PMBacid)结构变得疏松多孔,表面官能团丰富,表现出更优的脱色性能,对DR23的吸附去除率最高可达96.10%,最大饱和吸附量为111.51mg/g,且在经过3次循环再生后,PMBacid对DR23的去除率仍可达到88.31%;此外,pH对PMBacid的脱色吸附性能影响较小。PMBacid对DR23的吸附是一个受反应速率和扩散控制的复杂过程,符合于伪二级动力学模型和Langmuir等温吸附模型;PMBacid对DR23的吸附机理取决于吸附剂的物理化学性质,其孔结构及各官能团通过不同的机制参与了生物炭对DR23的吸附过程。  相似文献   

18.
以稻秆(RS)、稻壳(RH)、木屑(SD)为原料,在小型流化床实验台上制备生物炭,分析了原料种类和热解温度(400℃、500℃、600℃)对生物炭理化性质及吸附Cd2+性能的影响规律,并定性和定量分析了吸附过程中的作用机制。实验结果表明:准二级动力学方程和Langmuir方程能够较好地描述生物炭样品对Cd2+的吸附过程。生物炭RS500的平衡吸附量达到30.19mg/g,远远高于生物炭SD500,其中无机矿物的离子交换和沉淀反应吸附贡献值为24.95mg/g,是主导吸附机制;而生物炭SD500吸附Cd2+过程中,无机矿物和π键的贡献百分比分别为49.70%和38.21%。随着热解温度的升高,生物炭吸附Cd2+过程中含氧官能团的络合反应不断削弱而Cd2+-π键作用不断增强;稻秆炭和稻壳炭中无机矿物的吸附贡献值则呈先上升后下降的趋势,并在500℃热解温度下达到最大值。生物炭样品吸附Cd2+的作用机制中,离子交换和沉淀反应占比最大,Cd2+-π键作用次之,络合反应最小。  相似文献   

19.
在300~700℃下制备松树锯末生物炭(PC300、PC400、PC500、PC600和PC700),对其进行表征并考察了其吸附对硝基苯酚(PNP)的特性。结果表明,随着热解温度升高,生物炭表面结构更复杂,芳香性增强,极性减弱。碱性条件下,溶液pH对吸附量影响较大。准2级动力学和Langmuir等温模型能更好描述PNP在低温生物炭(PC300、PC400)上的吸附,高温生物炭(PC500、PC600、PC700)吸附PNP更符合Elovich动力学模型和Freundlich等温模型。生物炭吸附PNP的速率受液膜扩散和颗粒内扩散控制,低温生物炭上的吸附以静电作用为主,高温生物炭上的吸附以氢键和π-π相互作用为主。PNP在PC700上的动态吸附适合用Thomas模型描述,动态吸附量达135.8 mg/g。热解温度对松树锯末生物炭的理化性质及其吸附过程、机理均有一定影响。  相似文献   

20.
以大宗农业废弃物玉米秸秆为原料, 借助高温焙烧制得了玉米秸秆生物炭, 并通过对水中铅镉的吸附实验, 考察了高热解温度生物炭的重金属脱除性能。结果显示: 800 ℃焙烧所得玉米秸秆生物炭以块状及棒状形态为主, 孔径以微孔居多, 灰分中碱金属及碱土金属占比较大; 在25 ℃、pH值4、960 min、Pb2+、Cd2+初始质量浓度分别为429.24和280.34 mg/L时, 生物炭对Pb2+和Cd2+最大吸附量分别为94.79和24.47 mg/g; 该去除过程满足准二级动力学方程、Freundlich等温线模型, 在铅镉初始质量浓度均为150 mg/L时, 所得平衡吸附容量可达69.0、24.4 mg/g; 热力学分析显示, 该去除过程为吸热熵增过程; 而共存离子吸附实验显示, 铅离子对镉离子存在明显的拮抗作用。高热解温度玉米秸秆生物炭对水中铅镉的去除过程是物理吸附与化学沉淀共同作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号