首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 128 毫秒
1.
制备出了SiC/SiC-Al2O3-Y2O3炭/炭复合材料防氧化复合涂层,该复合涂层的内层SiC基涂层采用料浆固渗法制备,SiC-Al2O3-Y2O3外层涂层采用大功率电子束物理气相沉积法。研究表明,电子束物理气相沉积法能达到较好的沉积效果,在制备过程中形成了柱状晶结构的涂层,使得涂层具有更高的应变容限,涂层非常均匀致密。用SEM、XPS和EDS等分析方法分析了涂层的防氧化机理。结果表明:在制备过程和氧化过程中,涂层内会发生复杂的物理和化学变化,生成硅酸盐氧化物,显示出电子束物理气相沉积法在制备炭/炭复合材料防氧化涂层方面独特的优势。  相似文献   

2.
炭/炭复合材料高温抗氧化研究的现状   总被引:25,自引:1,他引:24  
对炭/炭复合材料的高温抗氧化研究现状进行了全面介绍,重点侧重于抗氧化涂层制备方法及研究的最新进展。在此基础上,提出了1650℃以上抗氧化涂层研究的新思路。  相似文献   

3.
炭/炭复合刹车材料的防氧化技术研究进展   总被引:3,自引:0,他引:3  
从炭/炭复合材料氧化特点、抗氧化要求出发,综述了基体改性技术和涂层技术,对炭/炭复合材料防氧化研究进展进行了详细的介绍,提出了对其高温抗氧化研究方向的一些观点。  相似文献   

4.
炭/炭复合材料被成功用于许多领域,主要用作抗烧蚀、热防护和刹车材料,如飞机的刹车盘、导弹的头锥等.化学气相沉积是制备炭/炭复合材料的关键技术,本文阐述了炭/炭复合材料化学气相沉积工艺原理,论述了化学气相沉积热解炭机理的研究现状,介绍了不同种类化学气相沉积工艺的特点,以及化学气相沉积工艺计算机数值模拟技术的研究进展.提出了炭/炭复合材料化学气相沉积技术的研究方向和发展趋势.  相似文献   

5.
《炭素技术》1999,(2):1
炭/炭复合材料抗氧化涂层是该材料可否用于高温结构件的关键。将人工神经网络用于CVDSiC抗氧化涂层的建模,试图解决该过程影响因素复杂、数学模型难于建立、无法对整个过程进行有效预测和控制的问题。初步探讨表明,采用人工神经网络建模,可以比较确切与全面地反映CVDSiC涂层过程的影响因素和内在规律,预测的工艺参数与沉积速率的关系同实验结果吻合较好,由此证实了将人工神经网络应用于抗氧化涂层制备系统是可行的。  相似文献   

6.
炭/炭复合材料抗氧化涂层是该材料可否用于高温结构件的关键。将人工神经网络用于CVDSiC抗氧化涂层的建模,试图解决该过程影响因素复杂、数学模型难于建立、无法对整个过程进行有效预测和控制的问题。初步探讨表明,采用人工神经网络建模,可以比较确切与全面地反映CVDSiC涂层过程的影响因素和内在规律,预测的工艺参数与沉积速率的关系同实验结果吻合较好,由此证实了将人工神经网络应用于抗氧化涂层制备系统是可行的  相似文献   

7.
一种中温炭/炭复合材料抗氧化涂层的制备及其性能   总被引:2,自引:1,他引:2  
制备了一种使用温度约1173K的炭/炭复合材料抗氧化复合涂层,它由磷酸盐过渡层和陶瓷相阻挡层构成。通过与单一陶瓷相涂层的对比试验研究了它的抗氧化机理。涂覆有该复合涂层的炭/炭复合材料试样在空气中1173K下氧化10h的失重为11.25wt%,氧化失重率为9.84×10-5g/cm2·min),而且其氧化失重率随氧化时间延长而降低;4小时内经过30次从1173K至室温急冷急热循环后失重为6.38wt%,涂层基本完好,说明涂层在不超过1173K温度时具有良好的抗氧化性和抗热震性能。该种涂层适合于中温下炭/炭复合材料的抗氧化保护。  相似文献   

8.
我国炭/炭复合材料研究进展   总被引:12,自引:0,他引:12  
我国自70年代开展炭/炭复合材料研究,至今已近30年,现已在多方面得到应用,首先是80年代初固体火箭发动机的炭/炭喉裤进入实用化阶段;近年来,作为磨擦材料和防热应用也取得重大突破,成功地在新型号军机的刹车盘和导弹头实现应用。本文回顾 了我国炭/炭复合材料研究发展的历史,对炭/炭复合材料近年来内的研究进展进行了总结,重点总结了我国在几个研究热点方面取得的成就,如高效低成本制备工艺、抗氧化涂层、计算机模拟、工程应用等。在此基础上,对我国炭/炭复合材料进一步发展应注意的问题提出了一些看法。  相似文献   

9.
炭/炭复合材料高温抗氧化研究进展   总被引:7,自引:0,他引:7  
综述了炭/炭复合材料的高温抗氧化研究现状;阐述了炭-石墨材料的氧化机理和炭/炭复合材料的氧化规律;分别对改性技术和外部涂覆技术的研究结果进行了总结,并提出了对于炭/炭复合材料高温抗氧化研究方向的一些看法。  相似文献   

10.
高林 《炭素技术》1990,(4):23-27
本文评论了炭/炭复合材料在空气中的氧化行为。讨论了氧化硼、基质抑制剂和玻璃状涂层对炭/炭复合材料氧化反应的抑制。  相似文献   

11.
The work presents the results of research on composite materials made of silicon-containing polymer-derived ceramic matrix composites (PDC-Cs) and nanocomposites (PDC-NCs). Carbon micro and nanofibers (CFs and CNFs) were used as reinforcements. The interactions between carbon micro and nanofibers and polysiloxane matrix, as well as interphase evolution mechanism in composite samples during their heating to 1000 °C were studied. CF/resin and CNF/resin composites were prepared via liquid precursor infiltration process of unidirectionally aligned fibers. After heating to 700 °C–800 °C, decomposition of the resin in the presence of CNFs led to the formation of fiber/organic-inorganic composites with pseudo-plastic properties and improved oxidation resistance compared to as-prepared fiber/resin composites. The most favourable mechanical properties and oxidation resistance were obtained for composites and nanocomposites containing the maximum amount of carbon nanoparticles precipitated in the SiOC matrix during the heat treatment at 800 °C. The precipitated carbon phase improves fiber/matrix adhesion of composites.  相似文献   

12.
Carbon/carbon (C/C) composites are considered as one of the most promising materials in structural applications owing to their excellent mechanical properties at high temperature. However, C/C composites are susceptible to high-temperature oxidation. Matrix modification and coating technology with ultra-high temperature ceramics (UHTCs) have proved to be highly effective to improve the oxidation and ablation resistance of C/C composites. In this paper, recent advances in oxidation and ablation resistance of C/C composites were firstly reviewed, with attention to oxidation and ablation properties of C/C composites coated or modified with UHTCs. Then, several new methods in improving oxidation and ablation resistance were discussed, such as by using nanostructures to toughen UHTCs coatings or carbon matrix and the combination of matrix modification and coating technology. In addition, relevant ablation tests with scaled models were also briefly introduced. Finally, some open problems and future challenges were highlighted in the development and application of these materials.  相似文献   

13.
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperatures, a SiC-Si coating with micro-pores was prepared by slurry and heat-treatment on the surface of C/C composites with SiC-Si inner coating acquired by pack cementation (PC). The microstructure, phase composition, element distribution, and anti-oxidation properties of the dual-layer SiC-Si coating were investigated. The results show that a SiO2-SiC inlay structure was formed during the oxidation process, due to a large amount of SiO2 rapidly generated by the oxidation of SiC particles in the porous coating. The coating with this structure could inhibit the cracking of SiO2 glass and had a good resistance to oxygen diffusion. Moreover, the crack propagation was blocked by the remaining micro-pores of the coating. The coating could protect C/C composites against oxidation for 846 h only with the mass loss of 0.16 % at 1773 K in air.  相似文献   

14.
《Ceramics International》2017,43(11):8208-8213
In order to improve the oxidation behavior of carbon/carbon composites in a wide range of temperature, a new SiC/glaze-precursor coating was developed.The SiC layer was produced by slurry and sintering, while the glaze precursor layer was prepared by slurry and drying. The microstructures and phase compositions of the coating were analyzed by SEM and XRD, respectively. The oxidation resistance of the coated composites was investigated using both isothermal and temperature-programmed thermogravimetric analysis in the temperature range from room temperature to 1600 °C. The results showed that the oxidation behavior of the coating was mainly controlled by the diffusion of oxygen during the test.The coating showed excellent oxidation resistance and self-healing ability in a wide range of temperature.  相似文献   

15.
C/C复合材料的高温抗氧化研究进展   总被引:21,自引:1,他引:20  
以设计思路的发展演化为线索,结合国内外近年的研究报道,从选材的性能要求、组成、抗氧化机理、成功范例及制备工艺的角度出发,分别对抗氧化涂层技术以及抗氧化基体改性技术进行了介绍。特别选取了近年在碳/碳复合材料抗氧化研究中报道较少的制备技术进行详细介绍,其中包括涂层技术中的超临界态流体工艺、溶胶-凝胶法、熔浆法、PACVD法以及基体改性技术的快速致密化工艺。这一领域内的中外研究也进行了对比,并在文章最后提出了对于碳/碳复合材料高温氧化保护研究方向的一些看法。  相似文献   

16.
Mesophase pitch-based carbon–carbon (C/C) composites were fabricated by cycles of impregnation/carbonization using two different preforms. Air oxidation was used as a stabilization process prior to carbonization. In order to study the effects of air oxidation, composites without air oxidation were also fabricated for comparison. The results showed that the effect of air oxidation was different for different preforms. For 2-dimensional (2D) punched carbon cloth preforms, air oxidation could greatly shorten the fabrication period, and had significant effects on the matrix microstructures. Without air oxidation, the carbon matrix of the composites consisted of small domains with a mosaic texture. With air oxidation, the matrix consisted of domains mingled with flow domains. However, air oxidation had little effect on composites prepared from 2D carbon felts preforms, and the corresponding carbon matrix in the composites consisted of mainly small domains with a mosaic texture irrespective of air oxidation.  相似文献   

17.
To protect carbon/carbon (C/C) composites from oxidation at elevated temperature, an effective WSi2-CrSi2-Si ceramic coating was deposited on the surface of SiC coated C/C composites by a simple and low-cost slurry method. The microstructures of the double-layer coatings were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analyses. The coating exhibited excellent oxidation resistance and thermal shock resistance. It could protect C/C composites from oxidation in air at 1773 K for 300 h with only 0.1 wt.% mass gain and endure the thermal shock for 30 cycles between 1773 K and room temperature. The excellent anti-oxidation ability of the double-layer WSi2-CrSi2-Si/SiC coating is mainly attributed to the dense structure of the coating and the formation of stable vitreous composition including SiO2 and Cr2O3 produced during oxidation.  相似文献   

18.
《Ceramics International》2015,41(6):7381-7386
The aim of this work was to compare fatigue behavior and oxidation resistance of pitch-derived CC (carbon) composite with CC/ceramic (carbon/ceramic) composites obtained by impregnation of CC composite with polysiloxane-based preceram and their subsequent heat treatment. Two types of CC/ceramic composites were studied; CC/SiCO composite obtained at 1000 °C, and CC/SiC composite obtained at 1700 °C. Both types of composites show much better fatigue mechanical performance in comparison to pure CC composite. CC/SiCO composite had 3 times better fatigue properties, and CC/SiC composite 4.5 times better fatigue properties than the reference CC composite. After a fatigue test composites partially retain their mechanical properties, and normalized residual modulus in the direction perpendicular to laminates exceeds 50% for CC and CC/SiCO composites. In the other directions normalized residual modulus is higher than 80% for all composites. Oxidative tests led at 600 °C in air atmosphere indicated oxidation resistance of CC/SiC composites.  相似文献   

19.
Carbon/carbon-boron nitride (C/C-BN) composites were manufactured by adding hexagonal boron nitride (h-BN) powders into carbon fiber preform and a subsequent chemical vapor infiltration (CVI) process for deposition of pyrolytic carbon (PyC). Microstructure and oxidation behavior of carbon/carbon composites with 9?vol% h-BN (C/C-BN9) were studied in comparison to carbon/carbon (C/C) composites. Results showed that with the addition of h-BN powders, a regenerative laminar (ReL) PyC with higher texture was achieved. Note that the introduction of h-BN powder make great contributes to graphitization degree of PyC, leading to larger oxidation activation energy. Moreover, under an air atmosphere, h-BN started to oxidize above 800?°C, and generated molten boron oxide (B2O3) which prohibited oxygen diffusion by filling in pores, cracks and other defects. As these reasons mentioned above, after oxidation tests under an air atmosphere, mass losses of C/C-BN9 composites were lower than that of C/C composites at all test temperatures (600–900?°C), indicating that the oxidation resistance of C/C-BN9 composites is better than that of C/C composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号