首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
为考察O_3氧化对煤化工废水中有机物的去除效果,采用O_3、 O_3/H_2O_2和O_3/H_2O_2/催化氧化3种工艺深度处理煤基合成油废水。在进水水质和O_3流量相同条件下,对COD和TOC去除效果依次为:O_3/H_2O_2/催化氧化工艺 O_3/H_2O_2氧化工艺单纯O_3氧化工艺。在优化试验中,当进水COD和TOC质量浓度分别为70.90和27.00mg/L, O_3气体流量为40 mL/min, H_2O_2投加量为30 mg/L,催化剂投加量为300 g/L,连续反应60 min的条件下,O_3、 O_3/H_2O_2、 O_3/H_2O_2/催化氧化3种工艺对COD和TOC的去除率分别为14.10%和23.13%、 46.12%和14.26%、26.85%和51.48%。O_3/H_2O_2/催化氧化工艺出水COD的质量浓度为38.20 mg/L,满足GB/T 19923—2005《城市污水再生利用工业用水水质》中冷却用水和锅炉补给水要求。  相似文献   

2.
钟晨  邱培培 《煤化工》2010,38(1):60-62
苏州某炼钢集团公司采用除油气浮-A/O-BAF工艺处理焦化废水,当进水COD质量浓度约7 000mg/L时,BAF出水COD质量浓度可达150mg/L左右。采用Fenton试剂进一步对BAF出水进行深度处理,通过试验得到了满足COD≤70mg/L回用要求的最优工艺条件:初始pH值=4,[H_2O_2]/[Fe~(2+)]=4:1,H_2O_2投加量为132mg/L,反应时间1h。  相似文献   

3.
O_3/H_2O_2高级氧化技术具有氧化能力强和无选择性等优点,被广泛用于高浓度、难降解和有毒有害的有机废水处理。考察了O_3/H_2O_2高级氧化技术在不同的处理条件(臭氧投加量、H_2O_2投加量、p H值、反应时间)下对实验室高浓度有机废水中COD的去除率影响,并通过页岩气采出水验证,结果表明:当臭氧投加量为40 mg·L~(-1)、双氧水投加量为0. 7 mg·L~(-1)、p H值为5、反应时间为40 min时,其COD去除率达90. 41%,可排入城市管网;在相同条件下处理COD浓度为1426 mg·L~(-1)的页岩气采出水,COD去除率达88. 3%。  相似文献   

4.
为降低出水COD,提高采油废水的可生化性,采用O_3、O_3/H_2O_2组合工艺对某油田采油废水进行处理,考察氧化反应时间、O_3质量浓度、pH、H_2O_2投加量、n(H_2O_2)∶n(O_3)对废水处理效果的影响。结果表明,单独使用O_3处理油田采油废水时,在O_3为20 mg/L、反应时间为60 min、废水pH为8.50条件下,COD去除率为28.5%,B/C由0.08提至0.248;O_3/H_2O_2组合工艺的处理效果更显著,在O_3为30 mg/L、反应时间为60 min、H_2O_2投加量为0.24 g/L、废水pH为8.50的最佳条件下,COD去除率达到55.4%,B/C提升至0.440。氧化处理不仅降低了废水COD,还可提高废水的可生化性,是一种较为有效的预处理技术。  相似文献   

5.
采用浸渍法将Cu O、Fe_2O_3负载在γ-Al_2O_3表面,制备高活性臭氧催化氧化催化剂,通过N_2吸附脱附曲线,X射线衍射、扫描电镜、X射线荧光光谱等方法对催化剂性能进行表征。与Cu O-Fe_2O_3/γ-Al_2O_3/O_3、H_2O_2/O_3、γ-Al_2O_3/O_3等工艺相比,采用Cu O-Fe_2O_(3/)γ-Al_2O_3/H_2O_2/O_3工艺降解制药二级生化出水效果最为明显,较高的催化氧化效率主要归功于H_2O_2的诱导作用和催化剂的催化作用的双重作用加速臭氧生成更多·OH。考察废水中COD去除率及影响降解的因素,包括催化剂投加量、p H、双氧水投加量、臭氧流量等,实验结果显示在催化剂投加量2g/L、废水p H为9、双氧水投加量3.6mg/L、臭氧流量1.0L/min条件下,COD去除率达到62.96%。催化剂循环使用10次后,COD去除率仍然可达到58%以上,并且金属离子浸出较少,其结构稳定。通过自由基捕获剂测试,探讨该催化氧化过程遵循自由基反应机理。  相似文献   

6.
针对工业园区印染废水的特性,采用O3氧化、O3/H2O2协同氧化、O3催化氧化三组工艺对比,考察反应时间、H2O2投加量、O3投加浓度对印染废水处理效果的影响.结果表明臭氧催化氧化工艺是较合适的处理工艺,反应参数为进水流量1.2 m3/h、回流量2.5 m3/h、臭氧气体流量0.8 m3/h、臭氧投加浓度25 mg/L、水力停留时间60 min时,反应结果为COD由40.58降至28.98 mg/L,去除率为28.59%;UV254由0.547降至0.325 cm-1,去除率为40.59%;色度由15倍降至9倍,去除率为40.00%,对NH3-N和TN去除效果不明显,出水NH3-N为0.642 mg/L,出水TN为4.637 mg/L,O3︰COD的质量比为1.44︰1.出水主要指标达到类GB 3838-2002《地表水环境质量标准》Ⅳ类标准.  相似文献   

7.
采用臭氧催化氧化工艺对二级生化出水中难降解有机物进行深度处理试验。结果表明,投加H_2O_2作为催化剂能明显提高出水COD去除率,当H_2O_2投加量为0. 10 m L/L,反应时间为5min时,出水COD值可从93 mg/L降至47 mg/L,比臭氧率R值达到0. 92,臭氧利用率相对最高且该条件下COD去除率达49%。  相似文献   

8.
武思拓 《广东化工》2012,39(10):144-145
采用A^2/O-臭氧氧化.活性炭过滤的组合工艺对焦化废水进行处理,以解决其达标排放。进水COD1267mg/L,NH3-N113mg/L,SS150mg/L左右时.工艺对COD、氨氮、SS的去除率分剐达到93%、95%、95%,出水满足《污水综合排放标准》(GB8978-1996)一级标准。试验结果零明该工艺对焦化摩水...  相似文献   

9.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

10.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

11.
《广东化工》2021,48(5)
采用连续流O_3-BAC组合工艺对某罐车清洗废水处理站MBR出水进行了中试处理实验,研究了O_3-BAC组合工艺对COD、UV_(254)和TOC处理效果的影响,探究了处理工艺对废水中有机物的变化影响,对BAC反应柱中的微生物种类进行了分析。结果表明,在臭氧投加浓度为20 mg/L,O_3反应停留时间40 min,BAC反应停留时间1 h,曝气量为0.5 L/min,反应初始pH为8,H2O2投加量为0.4‰,强化生化工艺停留时间12 h,回流量100%,反应级数为2级条件下,O_3-BAC工艺处理出水COD平均值为69.9 mg/L,平均去除率为79.5%,UV_(254)平均值为0.592 cm-1,平均去除率为86.5%。经GC-MS检测分析,经O_3催化氧化后有机物种类大幅减少,主要污染物酯类、胺类、酚类和含氮杂环化合物得到了明显去除。前段BAC单元主要菌门为Firmicutes、Proteobacteria和Chloroflexi,后段BAC单元主要菌门为Firmicutes。O_3-BAC组合工艺可以对罐车清洗废水MBR出水进行有效的深度处理。  相似文献   

12.
利用Fenton+MnO_2+A/O组合工艺处理过氧化甲乙酮生产废水。在Fenton+MnO_2预处理阶段对影响废水COD去除率的主要因素进行了考察,得到反应的最佳条件:p H=2.7,30%H_2O_2投加量为0.1 L/L,FeSO_4·7H_2O投加量为5 g/L,MnO_2投加量为8 g/L,MnO_2氧化反应时间为45 min。废水经Fenton+MnO_2氧化预处理后可生化性由0.14提高到了0.25左右。废水经Fenton+MnO_2+A/O组合工艺处理后,出水COD稳定低于500 mg/L。  相似文献   

13.
采用O_3、O_3+H_2O_2、O_3+UV工艺对化工园区污水厂二级出水进行深度降解试验,分析不同进气流量、不同双氧水和紫外光投加量对深度降解效果的影响。结果表明:单纯臭氧氧化下,臭氧投加率从2.9 g/h增加到4.3 g/h,COD_(Cr)去除率增加了8.4%;臭氧投加速率为4.3 g/h、H_2O_2投加量为3 mmol/L时,O_3+H_2O_2工艺处理效果最佳;紫外灯开4 min关1 min工况下氧化1 h,O_3+UV工艺出水TOC降至1.4 mg/L以下,有机物降解效果彻底;O_3、O_3+H_2O_2、O_3+UV三种工艺的有机物降解效果依次为O_3+UVO_3+H_2O_2O_3。  相似文献   

14.
臭氧-曝气生物滤池工艺深度处理石化废水   总被引:13,自引:0,他引:13  
采用臭氧-曝气生物滤池(BAF)工艺对广东某石化废水经一般生化处理后进行深度处理,以提高废水的可生化性,探讨了废水的初始pH、臭氧投加量和催化剂等因素对臭氧氧化的影响,以及曝气生物滤池不同停留时间对废水COD去除率的影响。结果表明,进水COD约60~80 mg/L,臭氧投加量55.56 mg/L,BAF水力停留时间1.5 h,经组合工艺处理后出水COD低于30 mg/L,达到中水回用标准。  相似文献   

15.
采用O_3/H_2O_2高级氧化工艺深度处理胞苷酸企业二级生化出水,考察了pH、H_2O_2用量、O_3浓度、反应时间等因素对深度处理效果的影响,探讨了有机磷矿化反应的动力学。结果表明,当废水有机磷质量浓度约为56 mg/L,COD约为640 mg/L时,适宜的反应条件为:pH 8.5,H_2O_2投加量20 mmol/L,O_3质量浓度12 mg/L,反应时间90 min;有机磷矿化反应遵循表观一级动力学,动力学常数为0.024 7 min-1。优化条件下,有机磷矿化率和COD去除率分别为91.6%和56.8%。O_3/H_2O_2氧化出水经混凝沉淀处理后,TP和COD符合纳管排放要求。  相似文献   

16.
采用中试装置研究了O_3/Mn~(2+)工艺处理石化废水二级出水的可行性。试验结果表明,Mn~(2+)的加入提高了臭氧化的效率。当废水pH为5.80,臭氧投加量为84 mg/L,Mn~(2+)投加量为1.5 mg/L,反应时间为20 min时,COD、TOC和色度的去除率分别为42%、36%和99%,比单独臭氧处理分别提高了10%、8%和3%,臭氧消耗量也从单独臭氧化的75 mg/L降低至66 mg/L,经催化臭氧化处理后的废水满足《上海市污水综合排放标准》(DB 31/199—2018)的一级标准。  相似文献   

17.
非均相催化臭氧化深度处理钻井废水的效能研究   总被引:1,自引:0,他引:1  
采用单独臭氧氧化、MnO2吸附和O3/MnO2催化氧化3种体系对经过混凝处理后的钻井废水进行深度处理,重点研究了O3/MnO2催化氧化体系去除钻井废水中有机物(以COD计)的效能。结果表明:相比单独臭氧氧化和MnO2吸附体系,O3/MnO2催化氧化体系能显著提高COD和TOC的去除率;COD去除率随着臭氧投加量和催化剂投加量的增加、pH的升高和反应时间的增加而增大;在臭氧投加量为80 mg/L、pH为11.5、催化剂投加量为20 g/L、反应时间为40 min的最佳工艺条件下,COD和TOC的去除率分别达到87.51%、83.18%,COD从686.28 mg/L降至85.72mg/L,出水达到《污水综合排放标准》(GB 8978—1996)的一级标准要求。  相似文献   

18.
利用微电解-Fenton组合工艺对油田压裂废水展开预处理研究,以COD去除率为考察指标,单独工艺正交试验结果表明:微电解的最优反应条件为Fe/C摩尔比2∶3、铁碳投加量50 g/L、反应时间60 min、pH值3;Fenton反应的最优条件为p H值3、反应时间90 min、H_2O_2加量12 m L/L、H_2O_2/Fe~(2+)摩尔比30。在最佳条件下,微电解和Fenton反应的COD去除率分别可达56.87%和45.61%,废水COD值由3 715 mg/L降至867.9 mg/L,总去除率达到76.54%。出水水质满足油田现场循环回用的标准。  相似文献   

19.
O_3/H_2O_2法处理印染废水二级出水的试验研究   总被引:1,自引:0,他引:1  
王炜 《应用化工》2010,39(8):1194-1197
H2O2协同臭氧氧化实验中,对于初始pH值为6.8的500 mL废水,在臭氧投加量为48 mg,0.1 mL H2O2在反应前加注到反应器的条件下,O3/H2O2工艺的COD cr去除率比臭氧单独氧化提高了7.9%。对于O3/H2O2工艺,其最佳H2O2投加量随废水pH值的增加而减少;一次投加H2O2方式的COD cr去除率在大部分时间内都好于间歇投加H2O2方式。  相似文献   

20.
以某煤焦集团二沉池出水为研究对象,采用小试烧杯实验,考察了Fenton试剂氧化法深度处理焦化废水的效果及其影响因素。结果表明,进水COD为260 mg/L,最佳试验条件为:室温25℃,H_2O_2投加量为333 mg/L,Fe~(2+)投加量为200 mg/L,初始pH为3,反应时间为60 min;在最佳试验条件下,出水COD为57.72 mg/L,可达到《炼焦化学工业污染物排放标准》(GB 16171-2012)和《工业循环冷却水处理设计规范》(GB50050-2007)的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号