首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a novel approach to increasing the lap joint strength, different from the traditional methods of either increasing the lap joint area or altering the joint geometry. This is accomplished by the selective use of rubber toughening in epoxy to optimize lap joint strength. This was accomplished in three stages. In the first stage an adduct was prepared, this was used to make bulk tensile specimens to calculate the bulk properties for various concentrations of rubber, i.e. 0, 10, and 20 parts per hundred parts of resin (epoxy). In the second stage finite element models were developed using the bulk properties previously obtained. Interfacial stresses were used to access the trends obtained by the selective use of rubber toughening at different locations of the overlap in different configurations. The modeling of adhesive joints was done using ALGOR 2-D, linear and nonlinear finite element analyses (FEA). In the third stage, tensile shear tests conducted on the lap joints validated the trends from the finite element models. Finite element modeling and meshing of the lap joints having 25.4 and 50.8 mm adhesive overlap lengths were completed. Different configurations of rubber toughened and untoughened adhesive were tried in these two overlaps. The validation was done by lap joint tests conducted on an Instron mechanical tester coupled with an extensometer. Comparable strengths were obtained for completely toughened overlap and the configuration where only the edges of the adhesive overlap were toughened and the region in-between was untoughened. Also, the nonlinear FEA was shown to represent the experimental results more closely than the linear approach.  相似文献   

2.
Single-lap band adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a four-body contact problem using a two-dimensional theory of elasticity (plane strain state). In the analysis, the upper and lower adherends and the adhesive which are bonded in two regions are replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli of the adherends, the ratio of the adherend thicknesses, and the ratio of the band length to the half lap length on the stress distributions at the interfaces are examined. A method for estimating the joint strength is proposed using the interface stress and strain obtained by the analysis. An elasto-plastic finite element analysis (EP-FEA) was conducted for predicting the joint strength more exactly. Experiments to measure strains and the joint strength were also carried out. The results show that the strength of a single-lap band adhesive joint is almost the same as that of a single-lap adhesive joint in which the two adherends are completely bonded at the interfaces. Thus, the single-lap band adhesive joints are useful in the design of single-lap joints.  相似文献   

3.
It is well known that adhesive joints have their optimum strength for thin bondline thicknesses (0.1-0.5 mm). The most common analytical methods used for adhesive joint analysis show an improved strength with increasing bondline thickness. This erroneous trend in prediction is investigated in this article. It is found that the through-the-thickness stress distribution in the adhesive is the main cause for the errors. The stresses, both peel and shear, at the interface between the adhesive and the adherend are found to increase, after an initial decrease in the low bondline thickness range, with increasing bondline thickness while the average stresses decrease. This trend explains the trends found in experiments. Further, as experimental results have shown, a theoretical optimum bondline thickness is found.  相似文献   

4.
In order to reduce the maximum peel and shear stress concentrations in the adhesive layer, a smart adhesively bonded scarf joint system was developed by surface bonding of piezoelectric patches onto a typical scarf joint. The forces and bending moments at the edges of the developed smart joint system can be adaptively controlled by adjusting the applied electric field on the piezoelectric patches, thus reducing the peel and shear stresses concentration in the adhesive layer. In order to verify the effect of surface bonding of piezoelectric patches in smart scarf adhesive joints, an analytical model was developed to evaluate the shear stress distribution and to predict the peel stress. It was established that the piezoelectric patched joint could reduce the stress concentrations at the scarf joint edges. The influence of the electric field and the effects of the scarf angle and the adherend Young's modulus on the peel and shear stresses were investigated. It was found that the effect of scarf angle is more significant at higher angles to raise the stresses. The effect of the electric field on the shear stress is more significant than on the peel stress.  相似文献   

5.
In order to improve the tensile lap shear strength of adhesively bonded joints, nano-particles were dispersed in the adhesive using a 3-roll mill. The dispersion states of nano-particles in the epoxy adhesive were observed with TEM (Transmission Electron Microscopy) with respect to the mixing conditions, and the effect of nano-particles on the mechanical properties of the adhesive was measured with respect to dispersion state and weight content of nano-particles. Also the static tensile load capability of the adhesively bonded double lap joints composed of uni-directional glass/epoxy composite and nano-particle-reinforced epoxy adhesive was investigated to assess the effect of nano-particles on the lap shear strength of the joint. From the experimental and FE analysis results, it was found that the nano-particles in the adhesive improved the mechanical properties of the adhesive. Also the increased failure strain and the reduced CTE (coefficient of thermal expansion) of the nano-particle-reinforced adhesive improved the lap shear strength of adhesively bonded joints.  相似文献   

6.
An adhesive-bonded double-lap composites joint with stepwise attachments was proposed and investigated experimentally and numerically in this study. For the conventional double lap joint (DLJ), the high shear stress and peel stress taking place in the adhesive layer near the patch termination significantly influenced the joint strength. In order to diminish the amount of the stresses, a new design of stepwise patch was introduced in the fabrication of the double-lap joint. Based on the finite element stress analysis (FEA), it was found that both shear stress and peel stress within the adhesive layer were reduced appreciably by the employment of the stepwise attachment. In addition, experimental results illustrated that the double lap joint with stepwise patch exhibited not only higher joint strength, but also it showed longer fatigue life than the conventional double lap joints.  相似文献   

7.
One of the major difficulties in designing adhesive lap joints is the stress singularity present at the adherend corners at the ends of the overlap. One way to overcome this problem is to assume that the corners have a certain degree of rounding. The objective of the present study was to better understand the effect of the change in the geometry of the adherend corners on the stress distribution and, therefore, on the joint strength. Various degrees of rounding were studied and two different types of adhesives were used, one very brittle and another which could sustain a large plastic deformation. The study gives a detailed stress and strain distribution around the rounded adherends using the finite element method. The major finding is that the stresses or strains in the adhesive layer of a joint with rounded adherend corners are finite. In real joints, adherends generally have small rounded corners. Consequently, the model with small radius corners may be used to represent real adherends.  相似文献   

8.
In this study, the initiation and propagation of damaged zones in the adhesive layer and adherends of adhesively bonded single and double lap joints were investigated considering the geometrical non-linearity and the non-linear material behaviour of the adhesive and adherends. The modified von Mises criteria for adherends and Raghava and Cadell's failure criteria (J. Mater. Sci. 8, 225 (1973) [1]) including the effects of the hydrostatic stress states for the epoxy adhesive were used to determine the damaged adhesive and adherend zones which exceeded the specified ultimate strains. The stiffness of all finite elements corresponding to these zones was reduced so that they could not contribute to the overall stiffness of the adhesive joint. This approach simplifies to observe the initiation and propagation of the damaged zones in both the adhesive layer and adherends. A tensile load caused first the damaged adhesive zones to appear at the right free end of the adhesive-lower adherend interface and at the left free end of the adhesive-upper adherend interface, and then to propagate through the adhesive regions near the adhesive-adherend interfaces (interfacial failure). In the bending test, the damaged zone initiated at the left free end of the adhesive-upper adherend interface in tension, and similarly propagated through the adhesive regions close to the adhesive-adherend interface (interfacial failure). In the double-lap joint subjected to a tensile load, the damaged adhesive zones initiated first at the right free end of the adhesive-middle adherend interface and then propagated through the adhesive region near the adhesive-adherend interface. After the damaged zone reached a specific length it also grew through the adhesive thickness, and the adhesive joint failed. The SEM micrographs of fracture surfaces around the free edges of the overlap region indicated that the failure was interfacial. An additional damaged zone growth was observed in the side adhesive regions due to lateral straining, called the Poisson effect.  相似文献   

9.
运用三维弹塑性有限元法对劈裂栽荷作用下的胶接接头(即劈裂接头)承载后的应力分布特征进行了分析,重点研究了胶粘剂层厚度对劈裂接头应力分布的影响。结果表明,胶粘剂的性能对应力分布有较大影响,提高胶粘剂强度和减小胶层厚度,均导致胶层应力集中加剧,各向正应力峰值呈上升趋势,各向剪切应力则正好相反;并且劈裂接头中应力分布以三向主应力为主,剪切应力的存在亦不可忽略。故在不引起过大应力集中和较大胶层缺陷条件下采用高强度的胶粘荆和较厚胶层对提高劈裂接头强度有利,实验结果与有限元分析相吻合。  相似文献   

10.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

11.
In this study, the elastic stress analysis of an adhesively-bonded tubular lap joint with functionally-graded Ni-Al2O3 adherends in tension was carried out using a 3D 8-node isoparametric multilayered finite element with 3 degrees-of-freedom at each node. Stress concentrations were observed along the edges of both outer and inner tubes in the overlap region. Thus, the outer tube region near the free edge of the inner tube and the inner tube region near the free edge of the outer tube experienced considerable stress concentrations. Normal σzz and shear σrz stresses were dominant among the stress components. In addition, both edges of the adhesive layer experience stress concentrations, and the von Mises σ eqv stress decreases uniformly across the adhesive thickness at the free edge of the outer tube, whereas it increases at the free edge of the inner tube. However, different compositional gradients had only a small effect on the through-the-thickness normal and shear stress profiles of both outer and inner tubes, and the peak von Mises σ eqv stresses occurred inside the tube walls. As the ceramic phase in the material composition of the outer and inner tubes was increased, peak von Mises σ eqv stress appeared in the ceramic layer. However, its magnitude was increased 1.75-fold in both tubes. In addition, the peak adhesive stresses appeared at the edge of the outer tube–adhesive interface near the free edge of the inner tube and at the edge of the inner tube–adhesive interface near the free edge of the outer tube. Increasing the ceramic phase in the material composition caused 1.22–1.67-times higher von Mises stresses along the free edges of the adhesivetube interfaces. In addition, with increasing number of layers across the inner and outer tubes the profiles of the normal σzz , shear σr and von Mises σ eqv stresses across the tube walls and adhesive layer become similar. Increasing the ceramic phase in the material composition of the tubes causes also evident increases in the normal σzz and von Mises stresses while it does not affect their through-the-thickness profiles. However, it affects only shear σr and von Mises stresses across the adhesive layer. Finally, the layer number and the compositional gradient do not affect considerably through-the-thickness normal and shear stress profiles but levels in a functionally graded plate subjected to structural loads.  相似文献   

12.
The effect of adhesive thickness on tensile and shear strength of a polyimide adhesive has been investigated. Tensile and shear tests were carried out using butt and single lap joints. Commercially available polyimide (Skybond 703) was used as adhesive and aluminum alloy (5052-H34) was used as adherends. The tensile strength of the butt joints decreased with increasing adhesive thickness. In contrast, adhesive thickness did not seem to affect the shear strength of single lap joints. The fabricated joints using the polyimide adhesive failed in an interfacial manner regardless of adhesive thickness. The linear elastic stress analysis using a finite element method (FEM) indicates that the normal stress concentrated at the interface between the adherend and the adhesive. The FEM analysis considering the interfacial stress well explains the effect of adhesive thickness on the joint strength.  相似文献   

13.
In this paper, single lap joints for joining fibre composites were modeled and a three-dimensional finite element method was used to study the joint strength under in-plane tensile and out-of-plane loadings. The behaviour of all the members was assumed to be linear elastic. The adherends were considered to be orthotropic materials while the adhesive could be neat resin or reinforced one. The largest values of shear and peel stresses occurred near the ends of the adhesive region, as expected. The values and the rate of variation in peel stress was more than that of shear stress. By changing the properties and behaviour of adhesive from neat epoxy (isotropic) to fibre composite adhesive (orthotropic) and with various fibre volume fractions of glass fibre, the ultimate bond strength increased as the fibre volume fraction increased, in both tensile and transverse loadings. Also, changing the orientation of fibres in the adhesive region with respect to the global axes influenced the bond strength.  相似文献   

14.
Employing a functionally graded adhesive the efficiency of adhesively bonded lap joints can be improved significantly. However, up to now, analysis approaches for planar functionally graded adhesive joints are still not addressed well. With this work, an efficient model for the stress analysis of functionally graded adhesive single lap joints which considers peel as well as shear stresses in the adhesive is proposed. Two differential equations of the displacements are derived for the case of an axially loaded adhesive single lap joint. The differential equations are solved using a power series approach. The model incorporates the nonlinear geometric characteristics of a single lap joint under tensile loading and allows for the analysis of various adhesive Young׳s modulus variations. The obtained stress distributions are compared to results of detailed Finite Element analyses and show a good agreement for several single lap joint configurations. In addition, different adhesive Young׳s modulus distributions and their impact on the peel and shear stresses as well as the influence of the adhesive thickness are studied and discussed in detail.  相似文献   

15.
CRH3高速动车组空调通风口胶接结构设计   总被引:1,自引:1,他引:0  
通过理论分析和计算确定了动车组空调通风口部件与铝合金车体胶接用胶粘剂的强度指标。介绍了胶粘剂的选择及胶接结构的设计原则,考查了搭接长度、搭接宽度、胶层厚度和被粘接材料厚度等对胶接件粘接强度的影响。结果表明:车体与空调通风口部件的胶接接头选择受剪切应力作用的搭接接头较适宜,并且搭接接头的承载能力随搭接长度或宽度增加呈先快速上升后趋于稳定态势;当搭接长度为10 mm、胶层厚度为6 mm、铝合金板厚度为5 mm且常温湿固化型单组分PU(聚氨酯)胶粘剂的剪切强度超过0.23 MPa时,搭接接头的承载能力相对最大。  相似文献   

16.
The goal of this research was to experimentally demonstrate the correlations between processing variables (adhesive type, bondline thickness, adherend thickness, surface pretreatment, overflow fillet) and effective strength in adhesively bonded single lap joints. While generalizations between effective strength and individual joint design parameters have been assumed for decades, the multifaceted interplay between parameters is complex and remains difficult to understand. Traditionally reported studies of the adhesive bond strength of single lap joints are often limited in the sample size populations needed to statistically probe concurrent design variables. To overcome sample size limitations a test matrix of 1200 single lap joints, partitioned by 96 unique fabrication conditions, was processed and tested using a workflow protocol orchestrated through a relational database. The enhanced pedigree and integrity enabled by using a relational database centered workflow allowed for multivariate principal component analysis of the joint design parameters, with all experimental data input available for peer audit. The results of this study revealed that the adhesive type biases the remaining joint configuration variables towards more influence with respect to either mechanical load or displacement to failure.  相似文献   

17.
An experimental–computational fracture-mechanics approach for the analysis and design of structural adhesive joints under static loading is demonstrated by predicting the ultimate fracture load of cracked lap shear and single lap shear aluminum and steel joints bonded using a highly toughened epoxy adhesive. The predictions are then compared with measured values. The effects of spew fillet, adhesive thickness, and surface roughness on the quasi-static strength of the joints are also discussed. This fracture-mechanics approach is extended to characterize the fatigue threshold and crack growth behavior of a toughened epoxy adhesive system for design purposes. The effects of the mode ratio of loading, adhesive thickness, substrate modulus, spew fillet, and surface roughness on the fatigue threshold and crack growth rates are considered. A finite element model is developed to both explain the experimental results and to predict how a change in an adhesive system affects the fatigue performance of the bonded joint.  相似文献   

18.
The current investigation focuses on the determination of the strength of adhesive-bonded single lap joints under impact with the use of a split Hopkinson pressure bar (Kolsky bar). For this, experiments were conducted at different loading rates, for identical metallic adherends bonded by a two-part epoxy adhesive. Four different types of specimens were adopted, all with a given adhesive thickness. The length of overlap and the width of the adherends were varied resulting in four different areas of overlap. It was found that the average strength, as calculated from the readings obtained from a Kolsky bar, increases with decrease of overlap area. An elastodynamic model for the shear strain of the adhesive-bonded single lap joint was developed to investigate this drastic effect of overlap area on the average strength of the joint. The mathematical model was found to be dependent on both the material properties of the adherend and adhesive, as well as the structural properties of the joint, viz. the width and the thickness of the adhesive layer. A combined experimental-numerical technique was used to predict the strain distribution over the length of the bond in the adhesive. It was found that the edges of the adhesive were subjected to maximum strain, while a large part of the adhesive was found to exhibit zero shear strain. The effect of the lap length and the width was studied individually. The cumulative effect of averaging the strain over the entire overlap area, was decreased shear strain for an increased overlap area. The Kolsky bar was identified to give conservative values of the shear strength of an adhesive bonded lap joint under high rates of loading.  相似文献   

19.
The stress singularity at the theoretical point of maximum stress in an uncracked single lap joint is analysed by a finite element method. By treating the interface corner of a bonded joint (between adherend and adhesive) as a perfectly bonded wedge and using a fracture mechanics method, considerable advantages over other continuum mechanics approaches for investigating the bondline thickness effect on joint strength are shown. This study has essentially two aims: (i) determination of the strength of the singularity by finite element analysis and comparison with the analytical prediction of Bogy for varying bondline thickness; and (ii) determination of stress intensity factors for varying bondline thickness. Good agreement is shown between the numerically-calculated strength of the singularity with the analytical value obtained from Bogy. The calculated stress intensity, after an initial decrease in the low bondline thickness range, is found to increase with increasing bondline thickness. This agrees well with the trends predicted by experiments.  相似文献   

20.
The effect of adherend notching on the strength and deformation behavior of single lap joints was investigated. First, a parametric study was conducted using finite element analysis (FEA). This initial part of the research into the effect of notches on joint behavior involved determination of the optimum notch location and notch dimensions. This was done by using FEA in a series of models with different notch positions and geometries. The results of this parametric study were used to select the most promising lap geometries for further study. Next, more detailed FEA were conducted on the selected lap geometries. These data were compared with the experimental single-lap shear test results to assess the applicability of different failure criteria. Three different model adhesives were used: a rubber toughened film epoxy with nylon carrier, a styrene-butadiene-styrene block copolymer based deformable 'gel' adhesive, and a two-part, metal filled brittle epoxy adhesive. The FEA for single lap joints containing 'top notches' on the unbonded, top side of the adherends, at locations corresponding to the overlap ends, and bonded with the two-part metal filled epoxy provided the best agreement with the experimental results. The experimental results showed a 29% increase in joint strength with the introduction of the notches, which matched very well with the 27% decrease in the peak peel stress observed by the FEA results. For this brittle adhesive, the peel stress is almost certainly the governing failure stress. This was confirmed by matching of the FEA peak peel stress ratios with the experimental load ratios, for both the notched and unnotched specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号