首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
谢笑虎  孙加林  宋文  林婷 《硅酸盐学报》2011,39(8):1312-1316
采用分子动力学模拟和X射线衍射研究了Gd2O3掺杂ZrO2固体电解质材料的结构,计算并分析了Gd2O3掺杂量对体系局域结构和配位数的影响。结果表明:当Gd2O3掺杂量超过8%(摩尔分数,下同)时,在1 000℃ZrO2的立方结构能够稳定。利用离子对的径向分布函数在原子层面上分析了Gd2O3对氧化锆立方萤石结构的稳定机理...  相似文献   

2.
将磁性基质Ni0.5Fe5O4/ZrO2和ZrO2进行组装制备出磁性固体酸催化剂,采用TEM、DTA、XRD等手段对Ni0.5Fe5O4/ZrO2磁性固体酸催化剂的结构和性能进行表征,结果表明磁性基质的引入延迟了ZrO2的晶化以及ZrO2(t)相向ZrO2(m)相的转变,使ZrO2更加稳定.  相似文献   

3.
综合介绍了中温固体氧化物燃料电池(solid oxide fuel cells,SOFCs)的电解质材料以及薄膜的制备工艺.中温SOFCs的工作温度应低于800℃,甚至低于750℃,为600~800℃.固体氧化物电解质的晶体结构基本上属于下列两类:面心立方的萤石型和立方型钙钛矿晶体结构.稳定ZrO2是萤石型结构电解质的一个典型代表.8%(摩尔分数,下同)氧化钇稳定氧化锆(8%in mole Y2O3 stabilized ZrO2,8YSZ),其在1 000℃左右才有可观的离子电导率(0.1 S/cm).在800℃,氧化钪掺杂氧化锆(Zr0.9Sc0.1O1.95,scandia doped zirconia,SSZ)的电导率(0.1 S/cm)比Zr0.9Sc0.1O1.95(10YSZ)的(0.03S/cm)高得多.Sm掺杂的CeO2(samarium doped ceria,CSO)电解质有希望应用于中温SOFCs.Sr和Mg掺杂LaGaO3(LSGM)氧离子导体已成为中低温SOFCs重要候选电解质材料.改进氧化锆基电解质的电导性能的另一个途径是薄膜化.厚度小于10 μm的YSZ基SOFCs,在800℃,0.8V时的功率密度可达800mW/cm2.薄膜比厚膜能提供更好的化学均匀性和更易控制成分.SOFCs要求精细和尺度小时,通常选择薄膜;而低成本和大尺寸时,通常选择厚膜.成本较低的膜成型工艺有等离子喷涂、胶态成型工艺、流延成型、冷冻干燥成型、丝嘲印刷和真空泥浆浇注等.  相似文献   

4.
固体氧化物燃料电池材料的研究进展   总被引:3,自引:0,他引:3  
固体氧化物燃料电池(SOFC)是当今一种先进的能量转换装置,具有能量转换效率高、环境友好、燃料适用性强和无腐蚀等突出优点。该电池通常用陶瓷作组装材料,操作温度为600-1000℃。详细介绍了固体氧化物燃料电池各元件的材料,包括Y2O3稳定化的ZrO2固体电解质,Ni/稳定化ZrO2阳极,掺杂的LaMnO3阴极以及掺杂的LaCrO3连接材料等。  相似文献   

5.
本发明涉及固体氧化物燃料电池,具体说是一种中温固体氧化物燃料电池阴极材料及其应用,按质量分数计,阴极材料由40%~99%钙钛矿型复合氧化物、1%~30%稀土氧化物掺杂的CeO:和0~59%电解质材料组成;所述电解质材料为5%~20%(物质的量分数)Y:0,稳定的ZrO2和/或5%~20%(物质的量分数)Sc2O3稳定的ZrO2。利用本发明可改变阴极材料活性组分的结构,  相似文献   

6.
采用柠檬酸络合法制备了(Sc2O3)0.06(Al2O3)x(ZrO2)0.94–x(x=0,0.005,0.01,0.02)系列电解质材料。通过X射线衍射、扫描电子显微镜、电化学交流阻抗谱和力学性能测试等方法对试样进行了分析,并研究了Al2O3掺杂量对电解质材料性能的影响。结果表明:Al2O3掺杂能很好的促进电解质的烧结,有效的降低晶界电阻并提高其抗弯强度。当Sc2O3和Al2O3掺杂量分别为6%和1%摩尔分数时,800℃时氧离子电导率为0.050 S/cm,室温抗弯强度达912 MPa。采用厚度为120μm该电解质片做支撑的电池在800℃最高功率密度为0.43 W/cm2,且在0.625 A/cm2恒流放电200 h后该电池性能没有衰减。  相似文献   

7.
Ni-ZrO2金属陶瓷电极材料的研究   总被引:1,自引:0,他引:1  
《中国陶瓷》2001,37(4):26-28
用普通陶瓷工艺制备了固体氧化物燃料电池(SOFCs)阳极用Ni/ZrO2金属陶瓷,用SEM、XRD等手段研究了Ni/ZrO2金属陶瓷的显微结构,并测试了Ni/ZrO2材料的热膨胀和电导率,综合以上三项对Ni/ZrO2金属陶瓷用作固体氧化物燃料电池的阳极材料性能进行评价,筛选了配方,并对制备工艺进行了讨论.  相似文献   

8.
8%Y2O3-ZrO2水基料浆的流变性质研究   总被引:3,自引:1,他引:3  
详细研究了固含量、球磨时间、分散剂用量和pH值对8%摩尔分数Y2O3稳定ZrO2水基料浆流变性质的影响。结果表明:料浆均表现出剪切变稀行为,且为假塑性流体。确定了最佳实验参数,当pH=10,分散剂用量为2%体积分数,球磨24h的ZrO2水基料浆,稳定性好,适合于成型薄片ZrO2固体电解质材料,并最终制备出体积分数为56%,适合浇注的ZrO2陶瓷料浆。  相似文献   

9.
采用共沉淀法制备S2O2-8/ZrO2-Al2O3-SiO2固体超强酸催化剂.通过单因素实验考察了三种金属最佳配比、陈化时间、S2O2-8的最佳浓度、浸泡时间、焙烧温度、焙烧时间等对固体酸酸强度的影响.研究表明,固体超强酸S2O2-8/ZrO2-Al2O3-SiO2的最佳制备条件是:n(Zr)∶n(Al)∶n(Si)=1∶2∶1,陈化时间5 h,S2O2-8的浓度为0.75 mol/L,浸渍时间3 h,焙烧温度400 ℃,焙烧时间4 h.此外,还利用红外光谱对样品结构进行了表征,利用酯化反应对其催化活性进行了初步研究.  相似文献   

10.
氧化锆负载硝酸盐固体碱催化剂的制备与表征   总被引:1,自引:0,他引:1  
董国君  王越  李婷 《应用化工》2008,37(3):310-314
氧化锆分别用NaNO3、KNO3、Ca(NO3)2浸渍,经高温焙烧制得Na2O/ZrO2、K2O/ZrO2、CaO/ZrO2固体碱催化剂,将其用于碳酸二甲酯和异辛醇酯交换合成碳酸二异辛酯的反应。通过XRD、FT-IR、BET等表征手段,分析了催化剂的物相结构、硝酸盐与载体的相互作用及焙烧温度对催化剂活性的影响。结果表明,Na2O/ZrO2、K2O/ZrO2、CaO/ZrO2固体碱催化剂分别在600,500,700℃达到各自活性的最大值。Na2O/ZrO2具有高活性和高稳定性,K2O/ZrO2活性高,但是稳定性较差。  相似文献   

11.
钟理  陈建军 《现代化工》2003,23(1):9-11
综述了H2 S固体氧化物燃料电池 (SOFC)的发展历史和研制现状 ,包括固体电解质薄膜如质子传导膜和氧离子传导膜的开发、电极催化材料尤其是阳极催化材料的研制、以及整个电池系统的性能研究。指出H2 SSOFC在工业化过程中所面临和必须解决的关键技术问题是 :电解质薄膜材料的研制及其制备 ,尤其是薄膜化的制备技术 ;电极材料的开发及制备 ,特别是阳极催化材料的选择与制备技术 ;膜 -电极三合一制备技术。并对H2 SSOFC的开发及工业应用前景作了展望  相似文献   

12.
典型的固体氧化物燃料电池(SOFC)由致密电解质、多孔阴极和阳极三部分构成。其中,电解质介于阴极和阳极之间,是一种具有全固态结构的氧化物陶瓷材料。电解质是SOFC的核心部件之一,是电池工作温度和电池性能的决定性因素。目前,对于高温电解质材料的研究与应用已经相对成熟。但是,在电池高温运行条件下,会导致电极和电解质界面反应、密封困难及使用寿命变短等问题。因此,SOFC电解质的发展逐渐趋向于中温化。但随着工作温度的降低,电解质欧姆阻抗(Ro)势必增大,使得电池的电导率下降。基于此,电解质在中温下的性能提升以及优化近年来备受关注。文中综述了几种不同类型的氧离子导体电解质最新研究进展,并论述了SOFC中低温运行条件下电解质性能提升的主要优化策略。  相似文献   

13.
Proton‐conducting solid oxide fuel cells (H‐SOFC), using a proton‐conducting electrolyte, potentially have higher maximum energy efficiency than conventional oxygen‐ion‐conducting solid oxide fuel cells (O‐SOFC). It is important to theoretically study the current–voltage (JV) characteristics in detail in order to facilitate advanced development of H‐SOFC. In this investigation, a parametric modelling analysis was conducted. An electrochemical H‐SOFC model was developed and it was validated as the simulation results agreed well with experimental data published in the literature. Subsequently, the analytical comparison between H‐SOFC and O‐SOFC was made to evaluate how the use of different electrolytes could affect the SOFC performance. In addition to different ohmic overpotentials at the electrolyte, the concentration overpotentials of an H‐SOFC were prominently different from those of an O‐SOFC. H‐SOFC had very low anode concentration overpotential but suffered seriously from high cathode concentration overpotential. The differences found indicated that H‐SOFC possessed fuel cell characteristics different from conventional O‐SOFC. Particular H‐SOFC electrochemical modelling and parametric microstructural analysis are essential for the enhancement of H‐SOFC performance. Further analysis of this investigation showed that the H‐SOFC performance could be enhanced by increasing the gas transport in the cathode with high porosity, large pore size and low tortuosity.  相似文献   

14.
In strontium- and magnesium-doped LaGaO3 (LSGM) electrolyte-based solid oxide fuel cells (SOFC), lanthanum-doped CeO2 (LDC) is usually used as buffer layer material to prevent reactions between LSGM electrolyte and NiO-based anode. In literature, based on results for one particular LSGM composition, a fixed buffer layer composition of 40% La-doped ceria (LDC40) has been used even with electrolytes of different LSGM compositions. In this study, we report the results of a comprehensive study of phase formations between various LSGM and LDC compositions. Our results show that only one LSGM/LDC combination results in no additional phases. For the other combinations, at least one and often two additional phases, LaSrGaO4 and LaSrGa3O7, result. Because LaSrGa3O7 has much lower conductivity, it is necessary to select combinations that avoid this phase. We propose that the combination that results in no additional phase should be considered favorably for SOFCs. For other LSGM compositions, LDC50 should be used as a buffer layer instead of LDC40 as is presently done in SOFC studies. Alternately, if LDC40 is preferred for buffer layer, then lower Sr content LSGM compositions should be used as electrolytes. These combinations are likely to lead to better long-term SOFC performance.  相似文献   

15.
固体氧化物燃料电池阳极材料的研究进展   总被引:11,自引:4,他引:7  
固体氧化物燃料电池(solid oxide fuel cells,SOFC)有着能量转换效率高,燃料适应性强和环境友好等优点,因此受到了人们的普遍关注,但是固体氧化物燃料电池的商业化应用还取决于其关键材料的进一步发展。介绍了SOFC对阳极材料的基本要求,重点评述了各种阳极材料的优缺点及其研究进展(包括金属、金属陶瓷、混合导体氧化物等),并对改进阳极材料性能的各种措施进行了归纳总结。  相似文献   

16.
Solid oxide fuel cells (SOFC) are promising candidates for alternative power generation systems due to their high-energy conversion efficiencies, and low emissions of environmentally hazardous by-products. Plasma spray (PS) is an effective, and relatively inexpensive process for fabricating high performance yttria stabilized zirconia (YSZ) electrolyte for SOFC. Yet, because of the numerous inter-granular defects introduced to the electrolyte by the plasma spray process, the electrolyte is not gas tight and consequently, the energy efficiency of the cell is severely curtailed. In order to improve the performance of the SOFC, spark plasma sintering (SPS) is introduced as a post-spray treatment to enhance the density of the PS YSZ electrolyte rapidly, and effectively. In this study, spark plasma sintering (SPS) was performed at 1200, 1400 and 1500 °C. Each sintering cycle had a holding time of 3 min. Single and multiple SPS cycles (3 min at preset temperature per cycle) were used to treat the plasma sprayed yttria stabilized zirconia (PS YSZ) electrolytes. The microstructure of as-received and SPS treated electrolytes as examined by scanning electron microscopy (SEM) demonstrated a microstructure transition above 1200 °C, where the typical plasma sprayed lamella structure transformed to a granular-type structure. The porosity of as-received and SPS post-treated electrolytes, which were determined by a mercury intrusion porosimeter (MIP) revealed a significant reduction in pores at 1500 °C. Average pore size reduced from 0.2 to 0.08 μm. The ionic conductivity of the electrolytes is evaluated by AC impedance spectroscopy to characterize the effect of SPS on enhancing the ionic conductivity of the electrolytes.  相似文献   

17.
In order to enhance the electrochemical performance and reduce the operation temperature of a conventional electrolyte supported solid oxide fuel cell (SOFC), a three layered electrolyte with various geometry is designed and fabricated. Novel three layered electrolytes comprise a dense and thin scandia alumina stabilized zirconia (ScAlSZ) electrolyte layer sandwiched between two hallow ScAlSZ electrolyte layers each having the same thickness as the support but machined into a filter like architecture in the active region with circular, rectangular and triangular cut off patterns. The percent of thin electrolyte layer in the active region is kept constant as 30% for all designs in order to investigate the effect of pattern geometry on the mechanical properties and the performance of the electrolytes. Single cells based on novel electrolytes are manufactured and electrochemical properties are evaluated. A standard electrolyte and electrolyte supported cell are also fabricated as a base case for comparison. Although the electrolyte having triangular patterns has the highest peak power at all operation temperatures considered, it exhibits the lowest flexural strength.  相似文献   

18.
三种燃料电池发电技术   总被引:3,自引:0,他引:3  
燃料电池是一种新型的能量转换装置,本文详细介绍了磷酸型、熔融碳酸盐型以及固体氧化物电解质型三种主要类型的燃料电池的单电池结构、材料、设计及研究方向等几个方面的问题。  相似文献   

19.
电解质是固体氧化物燃料电池(SOFC)的核心部件,其性能的优良直接决定燃料电池的应用前景。氧化锆基陶瓷具有较高的离子电导率、良好的结构和化学稳定性,是理想的固体电解质材料。本文综合介绍了各种掺杂元素对氧化锆基固体电解质性能的影响,电解质薄膜制备方法和研究现状。并对氧化锆基固体电解质的研究方向进行了展望。  相似文献   

20.
Quoting the abundance and cost of sodium reserve and robustly safe and high-energy solid electrolytes, sodium solid-state batteries (SSBs) exhibit huge promise for future energy storage applications compared to battery systems using organic liquid electrolytes and Li counterparts. However, the progress and application are still in infancy, experiencing numerous challenges for sodium SSBs due to inherent properties, interface complications, and fabrication. These are recently receiving unprecedented research attention by understanding and steadily resolving the issues associated with sodium SSBs. In this review, the governing bulk and interfacial issues and dynamics, background research correlations from Li counterparts, and strategies to address them are investigated for various ceramic-, polymer-, and ceramic–polymer composite based solid electrolytes. Particular attention is devoted to issues with ceramic electrolytes (such as interfacial stability, brittleness, porosity, and grain–grain boundary resistance) and polymer electrolytes (like dendrite formation, passivation layer, electrochemical instability, and ionic conductivity), and finally, robustness in overall performance and a few drawbacks (such as filler agglomeration, interface dynamics, and crack propagation) on the composited state-of-the-art ceramic–polymer electrolytes are highlighted. To end with, crucial inferences and future research perspectives are condensed on the development of enhanced solid electrolytes for sodium SSBs overcoming the shortcomings illustrated for different electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号