首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
复杂硫化铜精矿微波活化预处理-加压浸出工艺   总被引:4,自引:0,他引:4  
研究了以黝铜矿为主的复杂硫化铜精矿微波活化预处理-加压浸出工艺.结果表明,该精矿在微波功率82W、每批处理量95g及辐照时间120s条件下预处理后,矿石浸出性能显著改善.预处理过程中未见铅、锌、硫、砷等元素挥发损失.实验确定了微波活化铜精矿加压浸出工艺条件为:浸出温度453K,氧分压0.6MPa,初始硫酸浓度1.23mol/L,液固比5mL/g,浸出时间2.0h,木质素磺酸钙用量为精矿质量的1.25%,搅拌速度500r/min.在此条件下,铜、锌、铁浸出率分别达到86.36%,92.33%和27.64%.加压浸出渣经高温煤油溶解单质硫后返回作浸出配矿使用,可保障有价金属铜锌收率.  相似文献   

2.
锌精矿焙烧阶段产生的铁酸锌(ZnFe2O4)是一类具有尖晶石结构的复合氧化物,性质稳定,不溶于稀酸和碱,在常规浸出条件下,仍有20%的锌以铁酸锌的形式存在于锌浸渣中,导致锌精矿焙烧产物的锌浸出率不高,一般为80%左右。机械活化具有使矿物晶格产生缺陷,降低反应对温度、酸浓度等条件依赖程度的优点。因此,本文采用机械活化对锌焙砂进行预处理,以硫酸为浸出剂,研究了机械活化时间、球料比、硫酸浓度、液固比、温度对锌的浸出率及其他杂质离子的影响规律。结果表明:锌的浸出率随机械活化时间的延长呈现出先增大后降低的趋势。机械活化(H2C2O4·2H2O与锌焙砂的质量比为3.60%,球料比为2∶1,球磨时间10min)-酸浸(70g/L H2SO4,液固比为10∶1,温度为35℃)工艺结果表明,锌的浸出率为87.61%,与未机械活化时相比(82.59%),锌的浸出率提高5个百分点。机理分析表明,机械活化使锌焙砂颗粒粒径变小,产生晶格畸...  相似文献   

3.
钒铅锌矿含有多种有价金属,V品位高,具有较高的经济价值。本工作采用硫酸浸出法从该矿中提取钒锌,对浸出过程热力学进行分析,通过条件实验研究硫酸浓度、液固比、浸出时间、搅拌速率、浸出温度等条件对钒、铅、锌等主要有价金属浸出率的影响。结果表明,在较高pH值及较高温度下,浸出液中V会出现水解,含V的水解产物留在浸出渣中影响V浸出率。得到最优浸出条件为:硫酸浓度200 g/L,液固比3:1,浸出时间30 min,搅拌速率200 r/min,浸出温度为30℃。最优条件下V浸出率可达97.90%,Zn浸出率为97.11%,Fe浸出率<1%,Pb浸出率<0.01%。动力学分析结果表明,浸出过程的反应速率受扩散过程控制。酸浸过程使V和Zn进入浸出液,Pb和Fe留在浸出渣中,所得浸出液可使用离子交换或萃取法分离V和Zn。浸出渣中含钒0.41wt%、锌0.61wt%、铁15.50wt%、铅47.70wt%,主要成分为PbSO4和FeO(OH),可返回火法炼铅系统。  相似文献   

4.
对铬盐无钙焙烧渣进行加压硫酸浸出,考察了硫酸浓度、反应温度、铬酸酐加入量、反应时间、铬渣粒度对铬渣硫酸浸出效果的影响. 结果表明,焙烧渣主要物相组成为:铬铁矿(FeCr2O4)和镁铁矿[Mg(Fe,Al)2O4]等尖晶石类矿物含量为73.11%,赤铁矿(a-氧化铁)为12.42%,钠霞石(NaAlSiO4)为10.02%. 铬高效溶出的最佳工艺条件为:硫酸浓度65%(w),反应温度120℃,铬酸酐加入量为铬渣质量的10%,反应时间2 h,搅拌转速500 r/min,该条件下溶出率可达97.93%. 尾渣以硅物相为主,SiO2含量为80.8%. 浸出过程符合收缩未反应核模型,反应表观活化能为16.38 kJ/mol,反应速率为外扩散和化学反应混合控制.  相似文献   

5.
以预还原处理后的钒钛磁铁矿混合精矿为原料,用盐酸浸出其中的铁、钒、钛,考察了各因素对铁、钒、钛浸出率的影响,并对浸出渣进行了物相分析. 结果表明,在初始盐酸浓度20%(?)、液固质量比4:1、浸出温度110℃、浸出时间4 h的优化浸出条件下,铁、钒的浸出率分别为91.8%和95.0%,钛的浸出率为0.3%;浸出过程中钛是先溶解?再水解沉淀;盐酸浸出液可用于回收铁和萃取提钒;盐酸浸出渣中TiO2的硫酸分解率达98.2%,可作为硫酸法生产钛白的原料.  相似文献   

6.
董卉  陈娟  李箫玉  邵莉 《化工进展》2019,38(3):1538-1544
以新疆燃煤电站典型粉煤灰为研究对象,应用不同烧结剂与粉煤灰分别混合高温煅烧,通过盐酸和硫酸浸出锂,研究了烧结剂种类、煅烧温度、烧结剂添加量、浸出剂种类对锂浸出的影响。另外本文将微波技术应用于锂的浸出,对比研究了微波加热及传统水浴加热对锂浸出的效果。结果表明:碳酸钾、碳酸钠、乙酸钠、氯化钠作为烧结剂活化粉煤灰使锂的浸出效果较好;对于碳酸钠和碳酸氢钠等浸出效果较好的烧结剂,800℃较适宜作为其煅烧温度;盐酸比硫酸溶液更适合作为浸出剂浸出粉煤灰中的锂;微波加热对锂浸出有非常大的优势,微波4min比水浴4h 锂浸出量增加了55%;碳酸钠与碳酸钾混合烧结剂比单一烧结剂表现出更好的活化性能,应用30%碳酸钠和70%碳酸钾混合烧结剂煅烧活化粉煤灰后使灰中锂的浸出率达93%。  相似文献   

7.
硫铁矿烧渣酸浸铜反应动力学研究   总被引:1,自引:0,他引:1  
研究了硫酸烧渣的硫酸浸铜过程中,搅拌速率、浸出剂初始质量浓度、固液比、浸出温度和矿物粒径对浸出率的影响,并对硫铁矿烧渣浸取铜过程动力学进行了分析。研究结果表明,该浸出过程符合收缩芯模型,与化学反应控制动力学方程式相吻合,浸出反应的表观活化能为39.19 kJ/mol,浸出过程控制步骤为化学反应控制。  相似文献   

8.
以预还原处理后的钒钛磁铁矿混合精矿为原料,用盐酸浸出其中的铁、钒、钛,考察了各因素对铁、钒、钛浸出率的影响,并对浸出渣进行了物相分析.结果表明,在初始盐酸浓度20%(ω)、液固质量比4:1、浸出温度110℃、浸出时间4 h的优化浸出条件下,铁、钒的浸出率分别为91.8%和95.0%,钛的浸出率为0.3%;浸出过程中钛是先溶解-再水解沉淀;盐酸浸出液可用于回收铁和萃取提钒;盐酸浸出渣中Ti O2的硫酸分解率达98.2%,可作为硫酸法生产钛白的原料.  相似文献   

9.
在湿法炼锌沉铁渣和浸锌渣焙烧预处理中,常规化浸出、高温和高酸化浸出、氧压化浸出都是湿法炼锌沉铁渣和浸锌渣焙烧预处理的基本工作原理。根据各种方法与工艺的技术特点,采用电阻炉对湿法炼锌沉铁渣和浸锌渣进行焙烧预处理是最具合理性和科学性的。通过对氧气浓度、焙烧温度、时间和气体流量的研究,发现这些因素对沉铁渣脱硫率有着重要的影响。同时,湿法炼锌沉铁渣和浸锌渣焙烧预处理的物相及微观体现都表明:采用电阻炉进行湿法炼锌沉铁渣和浸锌渣焙烧预处理是完全可行的,也是符合其工艺要求的。因此,对湿法炼锌沉铁渣和浸锌渣焙烧预处理工艺方法的选择,主要取决于对锌渣性质的了解。应该根据锌渣的性质,结合各自工厂的生产特点来选择最适合的生产方法。因此,重点阐述电阻炉在湿法炼锌沉铁渣和浸锌渣焙烧预处理中的应用工艺,并提出在其过程中应该注意的问题和环节。  相似文献   

10.
针对目前冶锌置换渣综合回收利用存在的问题,采用氧化酸浸工艺结合氟化浸出工艺,确定了渣中有价金属的高效浸出工艺技术参数为:氧化浸出段,反应温度为85℃,双氧水加入量为0.3 g/g渣,硫酸废液的加入量为0.5 g/g渣和反应时间为4 h;氟化浸出段,反应温度为85℃,氟化铵加入量为0.015 g/g渣,硫酸废液的加入量为0.5 g/g渣和反应时间为2 h。采用二段浸出工艺,锌、铁和铜的浸出率达99%以上,锗和镓也达98%以上。  相似文献   

11.
锌冶金渣尘作为一种重要的锌二次资源,来源广、储量大、具有较高的综合回收利用价值。以NH3-CH3COONH4-H2O为浸出体系,考察粒度、反应时间、搅拌速度、液固比、总氨浓度、NH3与NH4+物质的量比和温度对锌浸出率的影响,结果表明:控制浸出温度为25 ℃、总氨浓度为5 mol/L、液固体积质量比为5 mL/g、n(NH3)/n(NH4+)=1:1、搅拌速度为300 r/min、浸出时间为60 min,在此条件下锌的浸出率可达84%。含锌冶金渣尘浸出动力学分析显示,浸出反应表观活化能为22.66 kJ/mol,锌浸出过程的浸出速率受固体膜层扩散及界面化学反应共同控制,并获得了浸出锌的动力学速率方程。  相似文献   

12.
针对目前冶锌置换渣综合回收利用存在的问题,采用氧化酸浸工艺结合氟化浸出工艺,确定了渣中有价金属的高效浸出工艺技术参数为:氧化浸出段,反应温度为85℃,双氧水加入量为0.3 g/g渣,硫酸废液的加入量为0.5 g/g渣和反应时间为4 h;氟化浸出段,反应温度为85℃,氟化铵加入量为0.015 g/g渣,硫酸废液的加入量为0.5 g/g渣和反应时间为2 h。采用二段浸出工艺,锌、铁和铜的浸出率达99%以上,锗和镓也达98%以上。  相似文献   

13.
选择微波辐射预处理废催化剂,可以显著提高锌的浸出率。采用X射线衍射(XRD)和扫描电子显微镜(SEM)对微波辐射预处理前后和浸出前后的物相及废催化剂形貌进行了表征。废催化剂原料以乙酸锌和活性炭为主。经过微波辐射预处理后,发生了物相变化,废催化剂中以碳和氧化锌为主要物相,并且活性炭孔道打开,氧化锌吸附于废催化剂表面和孔道中,大大提高了与浸出剂的接触面积。浸出后,废催化剂中以碳为主要物相,实现了氧化锌与碳的有效分离。  相似文献   

14.
以钒钛磁铁矿经煤基直接还原-电炉熔分工艺生产的钛渣为原料,采用磷酸活化焙烧-稀硫酸浸出方法去除杂质提高钛渣品位. 钛渣的物相包括黑钛石、辉石(玻璃相)、塔基洛夫石、镁铝尖晶石等. 考察了磷酸焙烧活化过程中各因素对钛渣晶型转化的影响及稀硫酸浸出过程中各因素对主要杂质(Ca, Mg, Al, Si)浸出的影响,得到优化的工艺条件为:焙烧温度1273 K,焙烧时间100 min,磷酸加入比例7.1%(w),酸浸温度110℃,硫酸浓度5%(w),液固质量比10:1,浸出时间120 min,在该条件下钛渣中TiO2含量由52.54%提高至68.31%.  相似文献   

15.
针对锌废渣中重金属污染环境,尤其是废渣中铅含量高于1%,无法作为无害渣使用的问题,本文采用自动矿物分析仪(MLA)分析氯盐浸渣(对锌废渣经过焙烧-酸浸得到的酸浸渣进行氯盐浸出得到)中铅的物相主要为PbBa(SO_4)_2,盐酸或含HCl的饱和NaCl溶液可将其有效分解,可使尾渣中铅含量达到1%效果。在此基础上,研究不同浸出体系对酸浸渣进行一步浸出,以期选出较优的浸出体系及浸出条件,达到使废渣中的铅含量降到1%以下的目的。研究结果表明:"饱和NaCl溶液+补加HCl+补加NaCl"体系浸出酸浸渣的效果明显好于"含HCl的饱和NaCl溶液+补加NaCl"和"饱和NaCl溶液+补加NaCl"两种体系浸出酸浸渣的效果,但出于HCl成本高考虑,选取"饱和NaCl溶液+补加NaCl"作为浸出剂及浸出方式。"饱和NaCl+补加NaCl"浸出酸浸渣的反应条件为:酸浸渣50g,250m L饱和NaCl,温度≥60℃,反应2h后补加15g NaCl,继续反应3h,Pb的浸出率91%,Pb在尾渣中的含量达到0.85%≤Pb1%。  相似文献   

16.
《无机盐工业》2015,47(6):23
对钛铁矿在微波场中预氧化和碳还原气氛下的化学反应进行了研究。采用X射线衍射(XRD)、扫描电镜(SEM)及能谱(EDS)分析手段,对钛铁矿微波氧化-还原后产物的物相、形貌、组成进行表征分析,并对微波还原后的钛铁矿物料进行了硫酸溶液(质量分数为20%)浸出行为研究。实验结果表明:钛铁矿在微波场(700 W,2.45 GHz)中氧化反应8 min会生成Fe2TiO5、Fe2O3及TiO2相,在随后的微波碳热还原过程中,钛铁矿中的铁离子由“非热点”处迁移到“热点”处,被还原成金属铁而聚集成球形富铁相,附着于矿物表面。经微波处理的物料在20%(质量分数)硫酸、40 ℃条件下酸解30 min,铁的浸出率有了显著提高,可达到75%以上。  相似文献   

17.
王慧瑶  魏永刚  周世伟  李博  石瑀 《化工进展》2020,39(5):1907-1914
以褐铁型高锰红土矿为研究对象,采用微波预处理-酸浸工艺提取Ni、Co。对矿样物相组成及Ni、Co、Fe、Mn等主要元素赋存状态进行X射线衍射(XRD)和电子探针(EPMA)表征,研究常压条件下硫酸浓度、浸出时间、浸出温度等因素对微波预处理矿样中Ni、Co浸出效果的影响。结果表明:矿样中镍钴品位较高但物相结构复杂,Ni主要与Mn以NiMn3O7?3H2O形式赋存,Co伴生于针铁矿和碱式氧化锰中;在最优浸出条件下,即硫酸浓度300g/L、浸出时间5h、浸出温度90℃、液固比6∶1(以mL/g计)、搅拌速度280r/min,Ni、Co浸出率分别达到95.4%和97.1%,与相同浸出条件下未经微波处理的矿样相比,Ni、Co浸出率分别提高了69.4%和70.1%,实现镍钴的高效浸出;对比微波处理前后矿样XRD图谱,发现微波作用下矿物中Ni、Fe、Mn等物相结构出现明显转变,利于Ni、Co酸浸反应。  相似文献   

18.
低品位碱预处理红土镍矿加压浸出过程   总被引:8,自引:1,他引:7  
研究了低品位碱预处理红土镍矿在混合酸介质中的加压浸出过程.褐铁型红土镍矿经碱预处理改性后,铁主要以非晶态铁氧化物形态存在,而镍主要以氧化镍形态吸附于非晶态铁氧化物表面.由实验确定的改性红土镍矿加压浸出优化工艺条件为:浸出温度458K、保温时间60min、浸出体系初始酸度2.44mol/L、液固比2mL/g、搅拌转速500r/min.上述工艺具有良好的稳定性,镍与钴浸出率分别保持在95%和80%左右,浸出渣含镍和钴分别低至约0.028%和0.007%,而杂质铁浸出率低至1%左右,有价金属镍、钴与杂质铁分离性能良好.经加压浸出,改性红土镍矿中的铁最终以赤铁矿形式水解沉淀入渣,且浸出渣含铁矿物中几乎不含镍,浸出渣中的铁可进一步回收利用.  相似文献   

19.
采用酸浸法回收高炉炼铁烟尘中的锌,研究了硫酸浓度和浸出温度对锌浸出速率的影响,并分析了锌的浸出动力学。结果表明,其浸出过程动力学方程遵从“未反应核缩减”模型,浸出动力学方程为1-2/3R-(1-R)2/3=kt,其浸出反应活化能为12.7 kJ/mol,浸出过程为内扩散过程控制,表观反应级数为0.94817。提高反应温度和硫酸浓度,均能加速锌的浸出,提高锌的浸出率。  相似文献   

20.
以湘西某厂的锌冶炼中浸渣为研究对象,通过对比几种不同类型氧化剂对浸渣中锌和镉的浸出效果,筛选出高效氧化浸出药剂——硝酸钠,并考察了浸出时间、硫酸浓度、浸出温度、液固比、硝渣比对锌、镉浸出率的影响,确定了浸渣中锌、镉的最佳浸出条件。结果表明,该浸渣在浸出时间为120 min,硫酸浓度为100 g/L,液固比为10 m L/g,浸出温度为95℃,硝渣比为0.3的条件下,锌的浸出率达到96.4%,同时镉的浸出率达到95.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号