首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
锌精矿焙烧阶段产生的铁酸锌(ZnFe2O4)是一类具有尖晶石结构的复合氧化物,性质稳定,不溶于稀酸和碱,在常规浸出条件下,仍有20%的锌以铁酸锌的形式存在于锌浸渣中,导致锌精矿焙烧产物的锌浸出率不高,一般为80%左右。机械活化具有使矿物晶格产生缺陷,降低反应对温度、酸浓度等条件依赖程度的优点。因此,本文采用机械活化对锌焙砂进行预处理,以硫酸为浸出剂,研究了机械活化时间、球料比、硫酸浓度、液固比、温度对锌的浸出率及其他杂质离子的影响规律。结果表明:锌的浸出率随机械活化时间的延长呈现出先增大后降低的趋势。机械活化(H2C2O4·2H2O与锌焙砂的质量比为3.60%,球料比为2∶1,球磨时间10min)-酸浸(70g/L H2SO4,液固比为10∶1,温度为35℃)工艺结果表明,锌的浸出率为87.61%,与未机械活化时相比(82.59%),锌的浸出率提高5个百分点。机理分析表明,机械活化使锌焙砂颗粒粒径变小,产生晶格畸...  相似文献   

2.
闪锌矿常压富氧浸出   总被引:2,自引:0,他引:2  
研究了反应釜中闪锌矿精矿常压富氧浸出过程,得出了最佳浸出条件:精矿粒度<44 mm的大于92%,浸出温度373 K,转速800 r/min,浸出液固比5 mL/g, [Zn]始=0.76 mol/L,酸锌摩尔比H2SO4/Zn=1.27,氧分压pO2=0.3 MPa,浸出时间5 h. 在此条件下,锌的浸出率大于95%. 对锌精矿和浸出渣的工艺矿物学研究结果表明,闪锌矿等主要矿物的浸出过程以生成H2S的反应为主,H2S再被氧化成元素硫,从而实现矿物的浸出.  相似文献   

3.
由高铁低锌萃铟废水制备锌精矿和铁红   总被引:1,自引:0,他引:1  
控制pH值,对高铁低锌萃铟废水加入硫精矿直接制备锌精矿和铁红进行了研究. 分析了反应机理,考察了不同硫化物对锌的回收效果,探讨了超声波辅助硫精矿制备锌精矿和高纯铁红的工艺条件,并利用SEM对锌精矿粒度和形貌进行表征. 在萃铟废水中含铁60.47 g/L、锌28.65 g/L时,在常温下调节pH值为2,加入-0.074 mm硫精矿,超声处理50 min的实验条件下,制得了含锌50.36%的锌精矿产品,锌回收率达95.29%,锌含量和回收率分别比未经超声处理提高了18.52%和23.67%. 制得的高纯铁红符合国家SJ/T10383-93标准一等品的要求,铁回收率为92%.  相似文献   

4.
实验研究了银铟在复杂硫化锌精矿加压酸浸过程中的行为,考察了浸出温度、浸出时间、硫酸浓度、氧压、精矿粒度及液固比对铟浸出率和银入渣率的影响,分析了铟在浸出初期的动力学. 结果表明,在浸出温度150℃、浸出时间90 min、硫酸浓度152 g/L、氧分压1.2 MPa、精矿粒度<45 mm及液固比5 mL/g的条件下,铟浸出率达76%以上,银入渣率达98%以上. In的初期浸出符合核收缩模型,受界面化学反应控制,表观活化能为70.67 kJ/mol.  相似文献   

5.
含铟氧化锌烟尘加压硫酸浸出工艺优化   总被引:1,自引:0,他引:1  
对含铟氧化锌烟尘加压浸出进行正交实验及单因素实验,考察各因素对浸出的影响. 结果表明,各因素对铟浸出率的影响显著程度为初始硫酸浓度>液固比>压力>温度>时间,对锌浸出率为初始硫酸浓度>液固比>温度>时间>压力. 优化工艺条件为温度140℃,釜内压力0.6 MPa,时间90 min,液固比8 mL/g,初始硫酸浓度160 g/L,搅拌速率500 r/min. 该条件下锌和铟浸出率分别达99%和91%以上,锌与铟可同时高效浸出,浸出液残酸低,工艺稳定性好  相似文献   

6.
通过实验确定了铜精矿氯化浸镍和浸出液脱铜的最佳工艺条件和工艺流程,重点研究了采用镍精矿脱除浸出液中的铜及如何通过提高镍精矿的活性来提高镍的回收率等问题,提出了加入多硫复合剂活化镍精矿除铜的方法。工艺简单、经济实用,浸出液脱铜率在99%以上,铜精矿浸出脱镍渣含镍质量分数可降至1.8%左右。实验中使用盐酸作为浸出剂,浸出速度快,镍浸出率高(62%),铜的抑制性好。整个工艺未带入杂质离子,克服了传统硫化法、铁屑法、萃取法等试剂耗量大、成本高、操作困难和杂质含量高等不利因素。  相似文献   

7.
铁闪锌矿加压浸出动力学   总被引:3,自引:0,他引:3  
以人工合成的高纯度铁闪锌矿为对象,研究了其加压浸出动力学. 在初始硫酸浓度为0.77 mol/L、液固比100 mL:10 g、搅拌转速550 r/min条件下,在0.1~0.5 MPa和388~418 K范围内考察了氧分压和浸出温度对锌、铁浸出速率的影响. 结果表明,388 K时浸出60 min,随氧分压由0.1 MPa升高至0.5 MPa,锌浸出率由35.69%增大至89.80%;氧分压为0.3 MPa时浸出30 min,随浸出温度由398 K升高至418 K,锌浸出率由44.00%增大至85.93%. 此外,在锌浸出达到平衡及铁明显水解沉淀前,锌、铁浸出率与浸出时间呈直线关系,锌、铁浸出速率随氧分压和浸出温度升高而增大,锌的浸出速率始终高于铁. 铁闪锌矿氧压酸浸反应的表观活化能为44.0 kJ/mol,锌浸出遵循界面化学反应控制的未反应核收缩模型. 经研究证实,人工合成矿的浸出实验结果与实际精矿的浸出实验结果一致.  相似文献   

8.
低品位碱预处理红土镍矿加压浸出过程   总被引:8,自引:1,他引:7  
研究了低品位碱预处理红土镍矿在混合酸介质中的加压浸出过程.褐铁型红土镍矿经碱预处理改性后,铁主要以非晶态铁氧化物形态存在,而镍主要以氧化镍形态吸附于非晶态铁氧化物表面.由实验确定的改性红土镍矿加压浸出优化工艺条件为:浸出温度458K、保温时间60min、浸出体系初始酸度2.44mol/L、液固比2mL/g、搅拌转速500r/min.上述工艺具有良好的稳定性,镍与钴浸出率分别保持在95%和80%左右,浸出渣含镍和钴分别低至约0.028%和0.007%,而杂质铁浸出率低至1%左右,有价金属镍、钴与杂质铁分离性能良好.经加压浸出,改性红土镍矿中的铁最终以赤铁矿形式水解沉淀入渣,且浸出渣含铁矿物中几乎不含镍,浸出渣中的铁可进一步回收利用.  相似文献   

9.
为扩大锌工业可供矿物来源,文中开发了一种微波活化强化锌中浸渣-高铁闪锌矿混合体系协同浸出的新工艺。通过考察硫酸浓度、浸出温度、矿物粒度、搅拌速度和矿渣比单因素的影响,微波预处理样品形貌,及浸出过程渣相组分,确定了浸出反应过程及动力学。结果表明:微波加热活化预处理对于后续浸出处理更为有利;在硫酸体系中,含锌物相的浸出顺序为:Zn_2SiO_4-ZnS-ZnFe_2O_4;在混合体系浸出中,锌的浸出过程遵循"收缩核模型",反应前期,锌的浸出速率受界面化学反应控制,表观活化能为53.94 kJ/mol,浸出后期,浸出渣中单质硫含量的增加,其会在矿物颗粒的表面形成致密包覆,从而使得锌的浸出速率受扩散控制。  相似文献   

10.
研究了磷酸微波活化法在不同操作条件下制备秸秆基活性炭,探讨了最佳预处理温度、磷酸的浓度、微波功率和微波辐照时间对活性炭性能的影响。最佳工艺条件为:预处理温度为500℃,磷酸溶液的质量分数为25%,微波活化功率为450 W,微波辐照时间为5 min。对所制得的活性炭进行苯酚吸附、亚甲基蓝吸附和红外光谱及电镜等分析检测。实验最终产率达到35%以上,亚甲基蓝吸附值为150 mg/g以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号