首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of supplementing diets with n‐3 alpha‐linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n‐3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.  相似文献   

2.
3.
This study analyses the effects of dietary lipid level and source on lipid absorption and metabolism in Senegalese sole (Solea senegalensis). Juvenile fish were fed 4 experimental diets containing either 100 % fish oil (FO) or 25 % FO and 75 % vegetable oil (VO; rapeseed, linseed and soybean oils) at two lipid levels (~8 or ~18 %). Effects were assessed on fish performance, body proximate composition and lipid accumulation, activity of hepatic lipogenic and fatty acid oxidative enzymes and, finally, on the expression of genes related to lipid metabolism in liver and intestine, and to intestinal absorption, both pre‐ and postprandially. Increased dietary lipid level had no major effects on growth and feeding performance (FCR), although fish fed FO had marginally better growth. Nevertheless, diets induced significant changes in lipid accumulation and metabolism. Hepatic lipid deposits were higher in fish fed VO, associated to increased hepatic ATP citrate lyase activity and up‐regulated carnitine palmitoyltransferase 1 (cpt1) mRNA levels post‐prandially. However, lipid level had a larger effect on gene expression of metabolic (lipogenesis and β‐oxidation) genes than lipid source, mostly at fasting. High dietary lipid level down‐regulated fatty acid synthase expression in liver and intestine, and increased cpt1 mRNA in liver. Large lipid accumulations were observed in the enterocytes of fish fed high lipid diets. This was possibly a result of a poor capacity to adapt to high dietary lipid level, as most genes involved in intestinal absorption were not regulated in response to the diet.  相似文献   

4.
There has been increasing interest in vegan diets, but how this dietary pattern regulates tissue fatty acids (FA), especially in men, is unclear. Our aim was to evaluate the effect of a vegan diet on plasma, erythrocyte, and spermatozoa FA composition in young men. Two groups consisting of 67 young (18–25 years old) men were studied. One group following an omnivore diet but did not consume fish, shellfish or other marine foods (control, n = 33), and another group following a vegan diet (vegan, n = 34) for at least 12 months were compared. Dietary intake was assessed via a food frequency questionnaire and a 24-h recall. FA composition was measured in plasma, erythrocyte phospholipids, and spermatozoa by gas–liquid chromatography. Compared to controls, the vegan group had higher reported intakes of carbohydrate, dietary fiber, vitamins (C, E, K, and folate), and minerals (copper, potassium) but lower intakes of cholesterol, trans FA, vitamins B6, D, and B12, and minerals (calcium, iron, and zinc). Vegan's reported a lower saturated FA and not arachidonic acid intake, both groups did not intake eicosapentaenoic acid and docosahexaenoic acid (DHA), but vegan's showed a higher alpha linolenic acid ALA intake. Vegans had higher plasma, erythrocyte phospholipid, and spermatozoa ALA, but lower levels of other n-3 polyunsaturated fatty acid (PUFA), especially DHA. Vegans were characterized by higher ALA, but lower levels of other n-3 PUFA, especially DHA in plasma, erythrocytes, and spermatozoids. The biological significance of these findings requires further study.  相似文献   

5.
The main objective of this study was to determine the best vegetable oils (VO) for nutrition of African catfish by assessing the effects of a complete replacement of fish oil (FO) by different VO sources on its growth performance, fatty acid composition, and elongase-desaturase gene expression levels. Fish (16.2 g of initial body weight) were fed with five experimental isonitrogenous, isolipidic, and isoenergetic diets in which FO was totally replaced by cottonseed oil (CO), palm oil (PO), desert date oil (DO), or Shea butter (SB). Complete replacement of FO with VO did not affect growth performance except for low values in fish fed SB diet. Muscle n-3 LC-polyunsaturated fatty acids (PUFA) were significantly reduced in fish fed VO-based diets when compared with FO fed fish. However, the muscle arachidinic acid (ARA) levels in phospholipid class were 1.4 to 1.6 times higher in fish fed CO and DO diets than FO fed fish despite the lower ARA suppliers from these VO-based diets, suggesting endogenous LC-PUFA biosynthesis from PUFA precursors in fish fed these VO. The fads2 and elovl5 gene expression levels in liver of fish fed DO were also higher compared to FO controls. Therefore, all the results support the hypothesis that African catfish has higher biosynthesis capacity to convert vegetable n-6 PUFA precursors like linoleic acid (LNA, 18:2n-6) into n-6 LC-PUFA of the ARA type, compared to the conversion of vegetable α-linolenic acid (ALA, 18:3n-3) into n-3 LC-PUFA of the eicosapentanoic acid (EPA) or docosahexanoic acid (DHA) type. The results also indicate that DO can be recommended as the best alternative to FO replacement in African catfish nutrition.  相似文献   

6.
Adequate dietary supply of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) is required to maintain health and growth of Atlantic salmon (Salmo salar). However, salmon can also convert α-linolenic acid (18:3n-3) into eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) by sequential desaturation and elongation reactions, which can be modified by 20:5n-3 and 22:6n-3 intake. In mammals, dietary 20:5n-3 + 22:6n-3 intake can modify Fads2 expression (Δ6 desaturase) via altered DNA methylation of its promoter. Decreasing dietary fish oil (FO) has been shown to increase Δ5fad expression in salmon liver. However, it is not known whether this is associated with changes in the DNA methylation of genes involved in polyunsaturated fatty acid synthesis. To address this, we investigated whether changing the proportions of dietary FO and vegetable oil altered the DNA methylation of Δ6fad_b, Δ5fad, Elovl2, and Elovl5_b promoters in liver and muscle from Atlantic salmon and whether any changes were associated with mRNA expression. Higher dietary FO content increased the proportions of 20:5n-3 and 22:6n-3 and decreased Δ6fad_b mRNA expression in liver, but there was no effect on Δ5fad, Elovl2, and Elovl5_b expression. There were significant differences between liver and skeletal muscle in the methylation of individual CpG loci in all four genes studied. Methylation of individual Δ6fad_b CpG loci was negatively related to its expression and to proportions of 20:5n-3 and 22:6n-3 in the liver. These findings suggest variations in dietary FO can induce gene-, CpG locus-, and tissue-related changes in DNA methylation in salmon.  相似文献   

7.
The aim of this study was to compare two different strategies to elevate brain, retina, liver, and heart docosahexaenoic acid (DHA) levels in guinea pigs. Fist, we used an increasing dose of α-linolenic acid (AIA) relative to a constant linoleic acid (LA) intake, and second, we used two levels of dietary DHA provided in conjunction with dietary arachidonic acid (AA). The percentage DHA and AA of total phospholipids in retina, liver, and heart, and in the brain phosphotidylethanolamine and phosphatidylcholine was studied in female pigmented guinea pigs (3 wk old) fed one of five semisynthetic diets containing 10% (w/w) lipid for 12 wk. The LA content in the diets was constant (17% of total fatty acids), with the ALA content varying from 0.05% (diet SFO), to 1% (diet Mix), and to 7% (diet CNO). Two other diets LCP) and LCP3) had a constant LA/ALA ratio (17.5∶1) but varied in the levels of dietary AA and DHA supplementation. Diet LCP1 was structured to closely replicate the principal long chain polyunsaturated fatty acids (PUFA) found in human breast milk and contained 0.9% AA and 0.6% DHA (% of total fatty acids) whereas diet LCP3 contained 2.7% AA and 1.8% DHA. At the end of the study, animals were sacrificed and tissues taken for fatty acid analyses. We found no significant effects of diets on the growth of guinea pigs. Diets containing ALA has profoundly different effects on tissue fatty acid compositions compared with diets which contained the long chain PUFA (DHA and AA). In the retina and brain phospholipids, high-ALA diets or dietary DHA supplementation produced moderate relative increases in DHA levels. There was no change in retinal or brain AA proportions following dietary AA supplementation, even at the highest level. This was in contrast to liver and heart where tissue DHA proportions were low and AA predominated. In these latter tissues, dietary ALA had little effect on tissue DHA proportions although the proportion of AA was slightly depressed at the highest dietary ALA intake, but dietary DHA and AA supplements led to large increases (up to 10-fold) in the proportions of these PUFA. Tissue uptake of dietary AA and DHA appeared maximal for the LCP1 diet (replicate of breast milk) in the heart. There were no significant changes in the plasma levels of 11-dehydrothromboxane B2 (a thromboxane A2 metabolite), for any diet. The data confirm that dietary ALA is less effective than dietary DHA supplementation (on a gram/gram basis) in increasing tissue DHA levels and that tissues vary greatly in their response to exogenous AA and DHA, with the levels of these long chain metabolites being most resistant to change in the retina and brain compared with liver and heart. Dietary DHA markedly increased tissue DHA proportions in both liver and heart, whereas the major effect of dietary AA was in the liver. Future studies of the effects of dietary DHA and AA supplementation should examine a variety of tissues rather than focusing only on neural tissue.  相似文献   

8.
Hydra, as sit‐and‐wait predators with limited food selectivity, could serve as model organisms for the analysis of the effect of a particular dietary component on growth and reproduction. We investigated the effect of food quality and of diets enriched with palmitic (PAM) or α‐linolenic acid (ALA) on the life history traits of two hydra species: Hydra oligactis and Hydra vulgaris. We tested the hypothesis that a diet enriched with polyunsaturated fatty acids (PUFA) can stimulate growth and reproduction in simple metazoans with a sit‐and‐wait type of predatory strategy. Our results revealed that a diet based on Artemia nauplii, which are not a natural food for freshwater hydra, stimulated growth, asexual reproduction, and survival in hydra. Artemia nauplii were characterized by the highest lipid content of all used food sources. The analysis of the fatty acid content of hydra indicated the domination the n‐6 fatty acids over n‐3 (eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], and ALA). Arachidonic acid appeared to be the dominant PUFA in Hydra, irrespective of diet supplementation with palmitic acid or ALA. The dietary supplementation of ALA negatively affected the survival, asexual reproductive rate, and size of clonal offspring of H. oligactis and had no effect on the life history traits of H. vulgaris. Our results also suggest that the hydras are not able to efficiently convert ALA into other essential fatty acids, such as EPA and DHA. To our knowledge, this is the first report about the adverse effects of n‐3 fatty acid supplementation in primitive metazoans such as hydra.  相似文献   

9.
Stearidonic acid (SA, 18:4n‐3) is a polyunsaturated fatty acid (PUFA) that constitutes the first metabolite of α‐linolenic acid (ALA, 18:3n‐3) in the metabolic pathway leading to C20–22 PUFA, such as eicosapentaenoic acid (EPA, 20:5n‐3), and docosahexaenoic acid (DHA, 22:6n‐3), which recently have received much attention because of their various physiological functions in the human body. Recently, several studies indicated that dietary SA increased EPA more efficiently than ALA. Thus, vegetable oils containing SA may become a dietary source of n‐3 fatty acids that is more effective in increasing tissue n‐3 PUFA concentrations than the current ALA‐containing vegetable oils. Nevertheless, few SA sources occur in nature, although there are still a large number of species untested to date. SA has been detected in variable amounts in several species of algae, fungi and animals tissues, but the seeds of some plant families seem to be better sources of SA, especially Echium (Boraginaceae) species. This work reviews the nutritional significance, medical uses and natural occurrence of SA.  相似文献   

10.
Haw pectin penta‐oligogalacturonide (HPPS), purified from the hydrolysates of haw pectin, has important role in decreasing hepatic cholesterol accumulation and promoting bile acids (BA) excretion in the feces of mice fed a high‐cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on BA reabsorption in ileum and biosynthesis in liver of mice. Results showed that HPPS increased fecal BA output by approximately 110%, but decreased ileal BA and the total BA pool size by approximately 47 and 36%, respectively, compared to HCD. Studies of molecular mechanism revealed that HPPS significantly decreased the mRNA and protein levels of farnesoid X receptor (FXR) in the small intestine of mice and inactivated the fibroblast growth factor 15 (FXR‐FGF15) axis, which increased the mRNA and protein levels of CYP7A1 by approximately 204 and 104%, respectively, compared to HCD. Interestingly, the mRNA and protein levels of apical sodium‐dependent bile acid transporter (ASBT) in the small intestine were approximately 128 and 73% higher in HPPS‐fed mice than those in HCD‐fed mice, respectively. However, no significant difference was detected for ASBT expression between HCD group and BA sequestrant cholestyramine group. These findings indicate that HPPS can suppress intestinal BA reabsorption and promoting hepatic BA biosynthesis. We speculated that HPPS could be ASBT competitive inhibitor rather than BA sequestrant in inhibiting BA reabsorption in ileum and improving cholesterol metabolism.  相似文献   

11.
Although there is extensive information describing the positive biological effects of conjugated linoleic acid and its main isomer rumenic acid (RA; C18:2 cis 9, trans 11), and alpha‐linolenic acid (ALA) and vaccenic acid (TVA), data about their bioavailability are not available. In this work, we investigated the oral absorption and disposition of these fatty acids in Wistar rats. A naturally enriched goat dairy fat (EDF) was obtained by supplementing ruminant diets with oils or oilseeds rich in polyunsaturated fatty acids (PUFA). The EDF was administered orally (single dose of 3000 mg EDF/kg body weight equivalent to 153 mg TVA/kg body weight, 46 mg RA/kg body weight and 31 mg ALA/kg body weight), and serial blood and liver samples were collected and TVA, RA and ALA concentrations determined by GC/MS. The fatty acids TVA, RA and ALA were rapidly absorbed (t1/2a, 0.36, 0.66 and 0.76 h, respectively, for plasma) and slowly eliminated (t1/2β, 17.04, 18.40 and 16.52 h, respectively, for plasma). The maximum concentration (Cmax) was detected in liver > plasma > erythrocyte. Our study shows that when orally administered EDF, its components TVA, RA and ALA were rapidly absorbed and distributed throughout the body by the blood circulation to exert systemic effects.  相似文献   

12.
Mateos HT  Lewandowski PA  Su XQ 《Lipids》2011,46(8):741-751
This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.  相似文献   

13.
Greatly increasing the amounts of flaxseed oil [rich in α-linolenic acid (ALNA)] or fish oil (FO); [rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in the diet can decrease inflammatory cell functions and so might impair host defense. The objective of this study was to determine the effect of dietary supplementation with moderate levels of ALNA, γ-linolenic acid (GLA), arachidonic acid (ARA), DHA, or FO on inflammatory cell numbers and functions and on circulating levels of soluble adhesion molecules. Healthy subjects aged 55 to 75 yr consumed nine capsules per day for 12 wk. The capsules contained placebo oil (an 80∶20 mix of palm and sunflowerseed oils) or blends of placebo oil with oils rich in ALNA, GLA, ARA, or DHA or FO. Subjects in these groups consumed 2 g ALNA; approximately 700 mg GLA, ARA, or DHA; or 1 g EPA plus DHA (720 mg EPA+280 mg DHA) daily from the capsules. Total fat intake from the capsules was 4 g per day. None of the treatments affected inflammatory cell numbers in the bloodstream; neutrophil and monocyte phagocytosis or respiratory burst in response to E. coli; production of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in response to bacterial lipopolysaccharide; or plasma concentrations of soluble intercellular adhesion molecule-1. In contrast, the ALNA and FO treatments decreased the plasma concentrations of soluble vascular cell adhesion molecule-1 (16 and 28% decrease, respectively) and soluble E-selectin (23 and 17% decrease, respectively). It is concluded that, in contrast to previous reports using higher amounts of these fatty acids, a moderate increase in consumption of long-chain n−6 or n−3 polyunsaturated fatty acids does not significantly affect inflammatory cell numbers or neutrophil and monocyte responses in humans and so would not be expected to cause immune impairment. Furthermore, we conclude that moderate levels of ALNA and FO, which could be incorporated into the diet, can decrease some markers of endothelial activation and that this mechanism of action may contribute to the reported health benefits of n−3 fatty acids.  相似文献   

14.
The effects of 5c, 11c, 14c-eicosatrienoic acid (20∶3BSO) and 5c, 11c, 14c, 17c-eicosatetraenoic acid (20∶4BSO), polyunsaturated fatty acids (PUFA) contained inBiota orientalis seed oil (BSO), on lipid metabolism in rats were compared to the effects of fats rich in linoleic acid (LA) or α-linolenic acid (ALA) under similar conditions. The potential effect of ethyl 20∶4BSO as an essential fatty acid also was examined in comparison with the ethyl esters of LA. ALA and γ-linolenic acid (GLA). BSO- and ALA-rich fat decreased the concentration of plasma total cholesterol, high density lipoprotein cholesterol, triglyceride and phospholipid as compared to LA-rich fat. BSO was more effective in reducing plasma cholesterol concentrations than was the ALA-rich fat. Dietary BSO markedly decreased the hepatic triglyceride concentration as compared to the LA-rich or ALA-rich fats. Aortic production of prostaglandin I2 tended to decrease in rats fed BSO or ALA-rich fat compared to those fed the LA-rich fat. Adenosine diphosphate-induced platelet aggregation was similar in the three groups. The proportion of arachidonic acid (AA) in liver phosphatidylcholine (PC) of rats fed BSO was lowest compared to that of rats fed ALA-rich or LA-rich fats. Administration of 20∶4BSO, ALA or GLA to essential fatty acid-deficient rats decreased the ratio of 20∶3n−9 to AA in liver PC to the same extent; administration of LA was more effective. The results indicate that the effects of specific PUFA contained in BSO on lipid metabolism are different from those of LA and ALA. It is also suggested that 20∶4BSO may exhibit some essential fatty acid effects.  相似文献   

15.
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.  相似文献   

16.
We have reported that dietary fish oil (FO) leads to the incorporation of long-chain n−3 PUFA into the gut tissue of small animal models, affecting contractility, particularly of rat ileum. This study examined the FO dose response for the incorporation of n−3 PUFA into ileal tissue and how this correlated with in vitro contractility. Groups of ten to twelve 13-wk-old Wistar-Kyoto rats were fed 0, 1, 2.5, and 5% FO-supplemented diets balanced with sunflower seed oil for 4 wk, after which ileal total phospholipid FA were determined and in vitro contractility assessed. For the total phospholipid fraction, increasing the dietary FO levels led to a significant increase first evident at 1% FO, with a stepwise, nonsaturating six-fold increase in n−3 PUFA as EPA (20∶5n−3), DPA (docosapentaenoic acid, 22∶5n−3), and DHA, but mainly as DHA (22∶6n−3), replacing the n−6 PUFA linoleic acid (18∶2n−6) and arachidonic acid (20∶4n−6) over the dosage range. There was no difference in KCl-induced depolarization-driven contractility. However, a significant increase in receptor-dependent maximal contractility occurred at 1% FO for carbachol and at 2.5% FO for prostaglandin E2, with a concomitant increase in sensitivity for prostaglandin E2 at 2.5 and 5% FO. These results demonstrate that significant increases in ileal membrane n−3 PUFA occurred at relatively low doses of dietary FO, with differential receptor-dependent increases in contractility observed for muscarinic and prostanoid agonists.  相似文献   

17.
Carbon tetrachloride (CCl4) is metabolized to trichloromethyl radical and induces liver injury with elevated serum transaminase and increased hepatic triacylglycerols (TG). To answer the question whether dietary polyunsaturated fatty acids (PUFA) enhance free radical-mediated liver injury, a docosahexaenoic acid (DHA)-rich fish oil (FO) or a saturated and monounsaturated fatty acid-rich beef tallow diet was fed to mice for 4 wk and then CCl4 was administered. When thiobarbituric acid-reactive substances (TBARS) were measured in the absence of antioxidant, the FO diet and CCl4 treatment markedly increased liver TBARS values synergistically, apparently supporting the interpretation that the highly autoxidizable DHA accelerates lipid peroxidation induced by CCl4. However, no such marked interaction was observed between diet and CCl4 treatment in liver TBARS values measured in the presence of an antioxidant in the assay mixtures as well as in conjugated diene contents. Furthermore, the FO diet did not enhance CCl4-induced elevation of serum transaminase but lowered liver TG levels. The proportion of DHA, the most easily autoxidizable among common PUFA, was increased but those of eicosanoid precursors were decreased in liver phospholipids by CCl4 treatment, possibly reflecting the inflammation-related mobilization of eicosanoid precursors but not lipid peroxidation. These results indicate that dietary enrichment with DHA does not enhance CCl4-induced liver injury through the so-called free radical-mediated propagative autoxidation of DHA in mice.  相似文献   

18.
The synthesis of docosahexaenoic (DHA, 22∶6n−3) and Osbond acid (OA, 22∶5n−6) is regulated by the heterodimer of peroxisome proliferator-activated receptor and retinoid X receptor (RXR). 9-Cis retinoic acid, a metabolite of vitamin A, is the most potent ligand of RXR. We tested whether vitamin A deficiency impairs DHA and OA synthesis in rats fed a vitamin A- and α-linolenic acid (ALA)-sufficient (VASALAS), vitamin A-sufficient and ALA-deficient (VASALAD), vitamin A-deficient and ALA-sufficient (VADALAS), or vitamin A- and ALA-deficient (VADALAD) diet. After 7 wk of feeding, liver and colon choline (CPG) and ethanolamine (EPG) phosphoglyceride FA were analyzed. The VADALAS compared with the VASALAS rats had elevated levels of both DHA (P<0.05) and OA (P<0.05) in liver CPG and EPG. In contrast, the VADALAD group had a lower DHA (P<0.01) and higher OA (P<0.005) level in CPG and EPG of both tissues than their VASALAD counterparts. ALA deficiency reduced DHA and enhanced OA levels in liver and colon CPG and EPG in both the vitamin A-sufficient (VASALAS vs. VASALAD) and-deficient (VADALAS vs. VADALAD) rats (P<0.005). The study demonstrates that ALA deficiency reduced DHA and enhanced OA levels in tissue membranes, and dietary vitamin A deficiency has a profound effect on membrane DHA and OA in rat tissues. Both vitamin A and DHA are involved in a myriad of vital physiological functions pertaining to growth and development and health. Hence, there is a need for a further study to unravel the mechanism by which vitamin A influences membrane DHA and OA.  相似文献   

19.
Rats were fed (for 2 or 6 wk) purified diets containing lard (LD) or menhaden oil (MO) at two levels of dietary fat,i.e., at 11.5 and 20.8% of energy in the low fat (LF) and the medium fat (MF) diets, respectively. Following the diet period, rats were sacrificed after either an overnight fast or after uninterruptedad libitum feeding. The studies were designed to investigate the dependence of our previously reported effects of MO,i.e. the reduction of plasma free fatty acid (FFA) levels and accumulation of hepatic triacylglycerols, on the dietary fat concentration and the nutritional state of the animal at the time of sacrifice. Reductions in plasma triacylglycerol and cholesterol levels in MO-fed relative to LD-fed rats were observed under all conditions. FFA levels were consistently reduced by MO-feeding at both dietary fat concentrations, but only when blood was sampled fromad libitum fed rats. Under these conditions there was a significant positive relationship between plasma FFA and triacylglycerol concentrations. Reduction in plasma FFA levels may be an additional mechanism associated with the triacylglycerol-lowering effect of fish oil (FO). The LF and MF MO diets caused a rise in plasma glucose levels with no significant change in insulin concentration, indicating that the reduction of FFA by MO was not related to changes in insulin concentration or insulin sensitivity. The MO diets had no effect on skeletal muscle or epididymal adipose tissue lipoprotein lipase activity, demonstrating that catabolism of triacylglycerol-rich lipoproteins contributes little, if any, to the MO-dependent reductions of plasma triacylglycerol and FFA. The previously reported accumulation of hepatic triacylglycerols after high fat (HF; 30% of energy) MO-feeding was not observed with the LF or MF MO diets, suggesting that the apparent direct inhibition of triacylglycerol secretion by FO imposes a rate-limitation only when feeding HF diets.  相似文献   

20.
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号