首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
刘校荣  王茹 《硅酸盐学报》2022,50(2):354-363
采用量热仪、X射线衍射仪、热重、扫描电镜、电感耦合等离子光谱等方法研究了苯丙共聚物(SA)对硫铝酸钙胶结料-无水石膏复合体系早期水化的影响。结果表明:SA会延缓水化进程,减少水化加速期钙矾石(AFt)、单硫型水化硫铝酸钙(AFm)和Al(OH)3 (AH3)含量,促进AH3与石膏和氢氧化钙反应生成AFt,并促进水化后期AFt向AFm转变。同时,SA会迅速降低体系孔溶液的表面张力,随着水化反应进行表面张力趋于稳定;SA也提高了孔溶液的p H值,增大OH浓度,影响了体系中Ca2+、SO42–和[Al(OH)4]的浓度和比例,减小水化初期水化产物的离子浓度积,降低水化产物析出速率,进而延缓水化进程、减少水化产物。  相似文献   

2.
苏美娟  王子明  赵攀  刘晓 《硅酸盐通报》2022,41(12):4172-4179
碱性和无碱速凝剂掺入水泥后的水化机理不同,导致应用性能存在明显差异。本文通过测试凝结时间和砂浆抗压强度等宏观性能对比了两种速凝剂的应用性能,并通过水化放热分析、XRD定量分析、热重分析和SEM微观形貌观察等微观方法综合分析了两者的早期水化历程。结果表明:碱性速凝剂加入水泥后,[Al(OH)4]-加快了水泥中石膏的消耗速度,水化初期生成大量钙矾石(AFt),促进了硅酸三钙(C3S)矿物的水化,缩短了水泥浆体的凝结时间并提高了砂浆的早期抗压强度,但石膏的加速消耗也使得单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C-A-H)等水化产物提前生成,影响了水泥基材料的后期抗压强度发展;无碱速凝剂加入水泥后,[Al(OH)4]-和SO2-4在液相中生成了大量AFt,促进了铝酸三钙(C3A)和C3S矿物的水化,影响了氢氧化钙(CH)的结晶析出。值得注意的是,SO2-4不仅促进了C3A生成AFt的过程,也延缓了水泥中石膏的消耗及AFm和C-A-H等产物的生成,因此无碱速凝剂的加入除了明显提高早期抗压强度外,后期28 d抗压强度也不受影响。  相似文献   

3.
本文提出了一类改性碱激发矿渣胶凝材料,通过在原材料中掺入额外的钙、铝质矿相(Ca(OH)2和γ-Al2O3),促进材料基体中的Friedel's盐(F盐)在氯离子存在条件下的形成,进而提升胶凝材料的氯离子固化能力。本研究探讨了钙、铝质矿物含量对碱矿渣反应产物组成、氯离子固化量以及力学性能的影响。结果表明,钙、铝质矿相的额外补充可显著提高胶凝材料的氯离子固化能力,同时体系的m(Ca)/m(Al)与该能力的相关性较高。物相分析结果表明,钙质矿相的补充使得反应产物中拥有富余的Ca(OH)2,在氯盐侵蚀作用下,富余的Ca(OH)2全部转化为F盐或其他物相,证实了体系氯离子固化能力的增强得益于F盐的形成,即得益于化学固氯能力的提升。抗压强度测试结果,表明钙质矿物的掺入对力学性能存在一定负面影响,而铝质矿相的掺入则能够在一定程度上弥补强度损失。  相似文献   

4.
董红娟  王博  张金山  袁治国  温磊 《硅酸盐通报》2020,39(10):3293-3297
为提高固体废弃物的利用率,使用粉煤灰、脱硫石膏、电石泥、水泥制备胶凝喷浆材料用于抑制矸石山的自燃,以废治废.采用正交试验的方法研究材料的强度,结果表明当基础组粉煤灰和脱硫石膏质量比70∶30,电石泥外加掺入量20%(质量分数),水泥外加掺入量10%(质量分数),水灰比为0.67时喷浆材料的强度最佳.喷浆固化体28d抗压强度达16.96MPa,可以满足现场应用要求.通过X射线衍射(XRD)和扫描电镜(SEM)对固化体的晶相结构和微观形貌进行分析,研究水化机理,结果表明水化产物主要是水化硅酸钙、水化铝酸钙和钙矾石晶体,对强度起主要作用.  相似文献   

5.
研究了45、105、165、500 ℃热处理脱硫石膏对超硫酸盐水泥性能的影响。对所制备的超硫酸盐水泥的基本物理性能做了表征。结果表明:掺入45、500 ℃热处理后脱硫石膏的超硫酸盐水泥凝结时间较长,而105、165 ℃热处理后的脱硫石膏使得水泥的标稠需水量升高,凝结时间缩短,同一水胶比下新拌胶砂的和易性显著降低;掺入500 ℃热处理脱硫石膏的水泥较45、105、165 ℃热处理石膏水泥的力学性能优异。微观分析发现,掺入不同温度热处理后脱硫石膏的超硫酸盐水泥主要水化产物为水化硅酸钙、钙矾石、石膏,其中500 ℃热处理脱硫石膏的超硫酸盐水泥在水化后期生成了大量钙矾石,而45、105、165 ℃热处理后脱硫石膏的超硫酸盐水泥水化产物中钙矾石矿物相较少;105、165 ℃热处理后的脱硫石膏更易吸附拌合水,降低了试样的均一性,使得其力学性能较低。  相似文献   

6.
张宇  杨家豪  刘瑜  宋子玉  何涵潇  赵风清 《化工进展》2022,41(10):5637-5644
为改善Ⅱ型无水磷石膏水化活性低、凝结硬化缓慢的问题,研制了一种复合助剂(β-半水石膏6%、改性钢渣3%、K2SO4 2%、铝酸钙水泥0.5%)。研究表明,掺入复合助剂后Ⅱ型无水磷石膏初凝时间由744min(空白样)缩短至76min(改性样)。在此基础上添加25%的高炉矿渣微粉改善力学性能和耐水性,改性后的胶凝材料绝干抗压强度达到15.4MPa,软化系数达到0.83。研究了胶凝体系的水化率、液相离子浓度随时间的变化规律,结合X射线衍射(XRD)和扫描电子显微镜(SEM)对水化产物和水化硬化机理进行了分析。复合助剂加速了Ⅱ型无水磷石膏的溶解及二水石膏晶核的生成和长大,提高了Ⅱ型无水磷石膏的水化率,与矿渣协同作用促进生成3CaO·Al2O3·3CaSO4·32H2O、3CaO·Fe2O3·3CaSO4·32H2O等多种低溶度积复盐,改善了胶凝材料的凝结硬化性能和耐水性。  相似文献   

7.
KR脱硫渣是铁水脱硫工序产生的废渣,多种固废协同制备胶凝材料是脱硫渣资源化的有效途径。本文利用KR脱硫渣、矿渣和脱硫石膏制备固废基胶凝材料,研究KR脱硫渣和矿渣掺量对胶凝材料力学性能的影响,优化原材料配比。通过XRD、TG-DSC、IR、SEM-EDS和水化热测试方法研究了固废基胶凝材料的水化产物及水化特性。结果表明,固废基胶凝材料优化配比为KR脱硫渣25%(质量分数,下同),矿渣60%,脱硫石膏15%,胶凝材料3 d、28 d、90 d抗压强度分别达到30.01 MPa、49.47 MPa和55.73 MPa。固废基胶凝材料的早期水化放热速率低,3 d累积放热量仅为普通硅酸盐水泥(OPC)的37.9%,其水化产物主要是针棒状钙矾石(AFt)和无定形水化硅酸钙(C-S-H)凝胶。KR脱硫渣中大量的Ca(OH)2在水化早期可以碱激发矿渣,使玻璃相硅酸盐解体,同时与脱硫石膏反应促进AFt的生成。KR脱硫渣、矿渣和脱硫石膏协同反应使水化后期的水化产物持续增加,相互胶结形成致密结构,有利于强度的持续增长。  相似文献   

8.
以不同的激发剂对粉煤灰-电石渣-钛石膏体系进行活性激发,研究了激发剂对体系强度和凝结时间的影响。通过分析体系中物相组成和微观形貌的变化,探明了不同激发剂的作用机理。结果表明:激发剂的加入可以有效缩短体系的凝结时间、提高试样的强度,其中以氢氧化钠为激发剂时各龄期抗压效果最好,28 d抗压强度可达10.4 MPa。X射线衍射(XRD)、扫描电镜-能谱(SEM-EDS)分析表明,复合胶凝材料的水化产物主要为C-(A)-S-H凝胶和钙矾石,激发剂的种类对水化产物的生成有较大的影响。氢氧化钙体系钙矾石数量最多;氢氧化钠体系以凝胶为主,钙矾石含量低;氢氧化钾体系,由于钾石膏的生成,前期钙矾石生成量较少,后期数量上升。以氢氧化钠为激发剂时,体系中较高的碱度和游离硫酸根的快速消耗促进了铁参与反应,生成Ca4Fe2SO10·16H2O(Fe-AFm),有利于原状钛石膏的直接利用。  相似文献   

9.
管宗甫 《硅酸盐通报》2018,37(3):1083-1087
利用正交实验研究了硅酸盐水泥和其他两种矿物组分复合激发对脱硫石膏-矿渣体系强度的影响,用SEM、XRD分析了水化样品的微观结构.研究结果表明:硅酸盐水泥等多组分复合激发下,脱硫石膏-矿渣体系在水中标准条件养护,3 d抗压强度达17 MPa以上,28 d抗压强度达58 MPa以上.复合激发剂3种组分的优化组合为6:6:5,复合激发剂的用量为脱硫石膏-矿渣体系质量的17%左右.脱硫石膏-矿渣体系在复合激发条件下的水化产物主要是钙矾石和C-S-H.大量钙矾石、石膏晶体相互交叉连生,未水化石膏、矿渣颗粒所填充其间,在C-S-H凝胶的胶结下,形成了较为致密的晶胶搭配构成的微观结构.  相似文献   

10.
任超  倪文  王勇华 《硅酸盐通报》2021,40(9):3022-3028
钢渣尾泥是转炉钢渣经过湿磨磁选后排出的二次废渣,堆存量大且难以实现大规模资源化利用。以钢渣尾泥为主要原料,协同其他工业固废制备胶凝材料可用于矿山充填。本文开展了钢渣尾泥基充填胶凝材料配合比正交试验、充填材料力学性能测试,利用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)等多种微观测试手段对钢渣尾泥基胶凝材料的水化机理进行分析。结果表明,钢渣尾泥掺量为55%(质量分数,下同),矿渣掺量为30%,脱硫石膏掺量为15%,胶砂质量比为1:4,料浆浓度为72%时,所制备的充填材料28 d抗压强度可达4.78 MPa,满足矿山充填材料性能的要求。钢渣尾泥基胶凝材料的水化产物主要为C-S-H凝胶和钙矾石,以及少量的Ca(OH)2,体系内水化产物C-S-H凝胶和钙矾石晶体的数量随着水化龄期的增加而明显增长。  相似文献   

11.
The paste hydration of mixtures of alite, C3A, and C4AF with and without gypsum and/or NaOH was studied by electron-optical and X-ray diffraction techniques. In the absence of both gypsum and NaOH, a foil-like reaction product and hexagonal calcium aluminate hydrates were formed first. Any CO2, present formed calcium carboaluminate. With time the foils changed to splines of CSH, and hexagonal aluminate hydrates changed to cubic C3AH6. When no gypsum was present, NaOH solution retarded the formation of hexagonal aluminates at the very early stages of hydration; it did not have much effect on the later hydration processes. With gypsum but without alkali, a foil-like product and ettringite formed first. Later the foils changed to splines of CSH and ettringite to monosulfate. Alkali, in the presence of gypsum, hastened the formation of splines of CSH. The results suggest that the hydration of alite, even after 14 days, goes through the solution phase.  相似文献   

12.
杨磊  井敏  宋海霞 《硅酸盐通报》2016,35(9):2787-2792
以脱硫建筑石膏为主要胶凝材料,研究无机改性剂粉煤灰和水泥、复合激发剂、有机硅防水剂对脱硫建筑石膏耐水性的影响。实验结果表明,单掺粉煤灰和水泥对脱硫建筑石膏体系的耐水性提高幅度不大。复掺粉煤灰、水泥和复合激发剂后,可以获得6 MPa以上的抗折强度,22 MPa以上的抗压强度,0.6以上的抗折软化系数,但抗压软化系数和吸水率与单掺体系相比差别不大。在复掺最优配方的基础上添加有机硅防水剂,在防水剂掺量为0.8%时,其复合脱硫石膏试块的抗折软化系数0.756,抗压软化系数0.791,分别提高了64.3%和108.1%,吸水率仅为3.7%,显著地提高了脱硫石膏的防水性能。  相似文献   

13.
以81.5%的矿渣、5%的钢渣、12.5%的脱硫石膏以及1%的水泥熟料,制备出了28 d抗压强度为56.75 MPa的低碱度胶凝材料,该胶凝材料可用于制备低碱度人工鱼礁混凝土.通过改变钢渣和脱硫石膏的掺量,研究了其掺量变化与试件强度的影响关系.实验结果表明:在该体系中,当钢渣掺量小于5%时,胶砂试块的强度随着钢渣的增加而提高;当钢渣掺量大于5%时,胶砂试块的强度随着钢渣掺量的增加而降低,并在钢渣掺基大于20%时快速下降.脱硫石膏的掺量对胶砂试块的强度影响更为显著;当脱硫石膏掺量达到12.5%时,与不含脱硫石膏的试样相比,抗压强度和抗折强度分别提高了168%和176%.利用XRD和SEM分析净浆的水化过程,结果表明,体系在早期水化主要生成AFt相和C-S-H凝胶,并对强度的增长起了主要作用.  相似文献   

14.
曲烈  赵素宁  李剑  郭磊 《硅酸盐通报》2012,31(3):549-552
研究了低水膏比时减水剂对β半水脱硫石膏力学性能的影响.结果表明:脱硫石膏脱水工艺最佳参数为烘干温度170℃,烘干时间6h和陈化时间5d.显微结构表明,β半水脱硫石膏颗粒表面为粗糙、不完整结构;烘干时无水石膏与半水石膏同时存在才具有较高的强度.当水膏比为0.28,减水剂掺量为0.9%~1%时,β半水脱硫石膏抗压强度达到最大值35 MPa,在此掺量下减水剂可有效减少成型时需水量和提高试块强度.  相似文献   

15.
本文研究了水化铝酸钙、水化硫铝酸钙的碳化性能。实验结果表明,高硫型水化硫铝酸钙(钙矾石)比低硫型水化硫铝酸钙容易碳化,两者碳化后均分解成碳酸钙、二水石膏、铝胶。与水化铝酸钙相比,水化硫铝酸钙更容易碳化。C_3AH_6是这些水化物中最稳定的。水化铝酸钙碳化分解成碳酸钙和铝胶,碳铝酸盐可作为过渡产物存在。提出这些水化物的碳化反应受扩散控制。通过碳化过程中的物相变化探讨了反应机理,提出了碳化反应方程。  相似文献   

16.
The formation of hydrates in dispersions of cubic tricalcium aluminate (C3A)–calcium hydroxide–gypsum was observed using soft X-ray transmission microscopy. This technique allows the continuous imaging of the hydration process without the introduction of drying artifacts. Within minutes, microcrystalline hydrates covered the C3A particles but over time large prismatic ettringite crystals are precipitated suppressing the microcrystalline hydrates. Within the resolution of the technique, no protective hydrated layer on the surface of C3A particles was observed.  相似文献   

17.
Hydration of a belite calcium sulphoaluminate cement was investigated over one year as a function of its initial gypsum content (variable from 0 to 35%). Particular attention was paid to the influence of the thermal history of the material at early age on its subsequent evolution. Pastes and mortars (w/c 0.55) were either cured at 20 °C or submitted for one week to a thermal treatment simulating the temperature rise (up to 85 °C) and fall occurring in drums of cemented radwastes. The thermal cycle accelerated the early stages of hydration and mainly decreased the proportion of AFt versus AFm hydrates, especially at low initial gypsum contents (≤ 20% by weight of cement). It also strongly reduced the compressive strength of gypsum-free specimens (by 35% after one year), and doubled their expansion under water. These results were explained by mineralogical evolutions towards a more stable phase assemblage which included retarded ettringite formation.  相似文献   

18.
沈燕  王培芳  朱航宇 《硅酸盐通报》2021,40(12):3910-3917
硫硅酸钙-硫铝酸钙水泥是一种新型低碳水泥,硫硅酸钙矿物的水化活性对水泥性能具有积极作用。本文利用离子掺杂制备了硫硅酸钙-硫铝酸钙水泥,研究了硫硅酸钙、硫铝酸钙矿物以及后掺石膏的配比优化。结果表明,硫硅酸钙-硫铝酸钙水泥熟料的实际矿物组成与设计含量较为一致。硫铝酸钙含量的增加有利于提高水泥的早期强度,其适宜含量范围为30%~40%(质量分数);水泥的强度随着硫硅酸钙含量的增加而提高,当其设计含量增加至48%(质量分数)时,水泥强度降低,该矿物的适宜含量范围为40%~55%(质量分数),其优化含量根据硫铝酸钙的含量而有所不同。石膏的添加有利于硫硅酸钙-硫铝酸钙水泥强度的增长,与天然石膏相比,硬石膏更能促进水泥强度的发展;水泥的后掺石膏优选硬石膏,其优化掺量为8%(质量分数),28 d强度达到76 MPa。硬石膏掺量的增加促进了钙矾石的形成,但过高掺量的硬石膏会抑制硫硅酸钙的水化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号