首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为提升超高性能混凝土(UHPC)的性能,采用改进后的Andreasen&Andersen颗粒堆积模型设计UHPC基体配合比,利用图像法分析UHPC不同基体黏度对钢纤维分布的影响,并通过抗压强度结合纤维分布系数选择合适的基体黏度,研究不同形状、体积掺量的钢纤维对UHPC力学性能的影响,最终得到力学性能最佳的配合比。试验结果表明:良好的UHPC基体黏度在均匀分散钢纤维的同时可以避免内部出现过多气泡,进一步提升UHPC抗压强度;与端钩、长直形钢纤维相比,波纹形钢纤维在相同黏度下分散效果更佳,且对UHPC基体力学性能提升效果更好。UHPC最佳配合比为水胶比0.16,水泥、硅灰、矿渣质量比0.75∶0.2∶0.05,波纹形钢纤维体积掺量3%,减水剂质量分数0.8%,此时粉体颗粒最紧密堆积、钢纤维分布均匀,UHPC性能最佳。  相似文献   

2.
针对修正的Andreasen-Andersen(MAA)颗粒堆积模型设计超高性能混凝土(UHPC)时会存在两个弊端,(即未验证湿堆积状况下的可靠性、未考虑钢纤维掺入对颗粒堆积体系的扰乱),采用二次饱和D-最优化模型和钢纤维等效颗粒直径模型对其进行优化与完善,并利用UHPC材料性能对提出的新思路进行反向验证。结果表明:基于建立的湿堆积密实度二次饱和D-优化设计模型有效验证了MAA模型在湿堆积状态下的适用性和可靠性;同时,通过评价钢纤维和等效替代颗粒对湿堆积密实度的影响,确定了长13 mm、直径0.2 mm的钢纤维的等效颗粒直径为5.65 mm;将钢纤维以球形颗粒的形式纳入MAA模型中,可以制备出基体密实、抗压强度较高的UHPC材料。  相似文献   

3.
为了研究钢管约束超高性能混凝土(UHPC)本构模型,对42根约束UHPC试件和3根无约束UHPC试件进行了轴心受压试验,考察了UHPC受约束后的破坏形态和应力-应变全曲线,分析了钢纤维掺量与长径比、聚丙烯纤维掺量与长径比以及钢管厚度对应力-应变全曲线的影响规律。结果表明:钢管厚度为主要影响因素,可显著提高UHPC峰值应力与应变;混杂纤维能提高约束UHPC峰值应力与应变,其中,钢纤维掺量的影响较为明显,在聚丙烯纤维掺量适宜时,随钢纤维掺量增加,约束UHPC峰值应力增加,峰值应变先减小后增加。基于实测的约束UHPC应力-应变典型曲线,建立了相应的本构模型。  相似文献   

4.
常亚峰  师俊平  侯亚鹏 《硅酸盐通报》2021,40(10):3385-3395
本文对5组超高性能混凝土(UHPC)立方体试件进行了轴心受压试验,观察不同纤维掺量及不同尺寸UHPC试件的破坏过程及破坏形态,研究了端钩型钢纤维及不同尺寸对UHPC受压性能的影响,比较各纤维体积掺量立方体试块的荷载-位移曲线,给出了纤维约束系数,分析了其对UHPC立方体抗压强度及压缩耗能的影响,建立了UHPC立方体抗压强度的预测模型。结果表明:与未掺纤维UHPC试件相比,掺入端钩型钢纤维的试件,在载荷达到极限荷载的40%左右时,试件开始发生损伤,在载荷接近极限荷载时,试件内部发生持续的快速断裂声响;掺入端钩型钢纤维的UHPC试件最终破坏呈多条斜向裂缝,且最终破坏时试件仍能保持完整形态,呈现“裂而不碎”的状态;随着端钩型钢纤维体积掺量的增加,试件的受压峰值荷载增加,且伴随着试件的变形增大;与未掺纤维UHPC试件相比,随着纤维掺量的增大,尺寸效应对UHPC的受压性能的影响逐渐减小。基于纤维约束指数,建立了UHPC立方体抗压强度的预测模型,预测结果与试验结果吻合度较高。  相似文献   

5.
掺2种不同形状的超细镀铜钢纤维,制备出性能优异的超高性能混凝土材料(UHPC),采用分离式Hopkinson压杆装置对UHPC材料进行了多次高速冲击压缩实验,研究了应变率、冲击次数、纤维种类及其混杂对该材料抗多次冲击性能的影响规律,采用X射线CT测试技术研究UHPC在多次冲击荷载作用下的动态损伤演变规律并对材料的损伤程度进行定量分析。结果表明:端勾型钢纤维对UHPC材料的增强、增韧效果略优于平直型钢纤维,掺加1%的平直型和2%端勾型钢纤维的材料具有最优异的静态和动态力学性能,提出了改进的动态增长因子模型解析式,与实验结果具有很好的吻合度。  相似文献   

6.
为探索增强纤维对混凝土性能影响的规律,选用聚乙烯醇(PVA)纤维、超高相对分子质量聚乙烯(UHMWPE)纤维、玄武岩纤维和玻璃纤维增强混凝土制备超高性能混凝土(UHPC)。通过性能测试,选出UHPC改性最佳纤维——PVA纤维和UHMWPE纤维。采用Design-Expert专业实验数据分析软件,对PVA和UHMWPE混杂纤维设计进行理论模拟,针对目标纤维进行掺量优化设计,得出当12 mm长度的PVA纤维的体积分数为0.3%、6 mm长度的UHMWPE纤维的体积分数为0.9%时,目标UHPC的抗折强度、抗压强度与流动度达到最优化设计目标。  相似文献   

7.
研究了超高性能混凝土(UHPC)湿接缝界面破坏特性、拉伸强度以及拉伸强度比(接缝试件界面拉伸强度相对于整体试件的比值)等。结果表明:所有UHPC湿接缝试件的破坏模式均为脆性破坏;相比于未掺纤维湿接缝试件(界面拉伸强度2.24 MPa),掺纤维UHPC湿接缝试件具有更好的界面粘结性能(界面拉伸强度可达6.64 MPa,拉伸强度比可达68.6%);当纤维体积掺量不大于2.5%时,湿接缝试件的界面拉伸强度、拉伸强度比以及界面断裂韧性均随纤维体积掺量的增大而增大,最佳纤维体积掺量为2.5%;长纤维对UHPC湿接缝界面拉伸强度、拉伸强度比以及界面断裂韧性的提升效果优于短纤维,异形纤维优于平直形纤维;配筋UHPC湿接缝试件延性特征显著优于未配筋试件,增加钢筋锚固长度、界面配筋率是提高UHPC湿接缝延性特征和界面拉伸强度的较有效方法;当钢筋锚固长度达到6倍钢筋直径时,湿接缝处界面拉伸强度大于整体浇筑UHPC拉伸强度。此外,构建了不同纤维参数下UHPC湿接缝界面拉伸应力-相对位移简化模型。  相似文献   

8.
为了掌握钢纤维-聚乙烯纤维(PE纤维)混杂对水泥基材料静动态弯拉性能的影响规律,通过三点弯拉试验和落锤冲击试验方法,研究了钢-PE纤维混杂(掺量保持体积分数2.0%不变)增韧水泥基复合材料(HFTCC)的静动态弯拉性能,分析了钢纤维与PE纤维的混杂效应以及相应的增韧机理。结果表明:HFTCC静态弯拉性能与钢-PE纤维中PE纤维掺量正相关,而动态弯拉性能与钢纤维掺量表现出较强的正相关。1.5%(体积分数) PE纤维与0.5%钢纤维混杂表现出最佳的静态弯拉峰值应力;1.5%钢纤维0.5%PE纤维表现出最佳的动态弯拉能量吸收。在静态弯拉下,钢-PE混杂纤维相较于2.0%钢纤维对HFTCC峰值强度及能量吸收提升幅度分别为26.5%~31.7%与14.8%~56.8%;HFTCC的动态强度增长因子(DIF)与能量吸收表现出明显的应变率效应。钢纤维和PE纤维适当混杂可对HFTCC发挥较好的协同增强增韧效应,从而有效提升HFTCC的静动态弯拉性能。  相似文献   

9.
王剑  李北星  杨建波 《硅酸盐通报》2020,39(7):2120-2126
为利用机制砂作细集料制备一种低成本的超高性能混凝土(UHPC),研究了石粉含量(5% 、7% 、10% 、12% 、15%)与3种长度的钢纤维及其2种钢纤维混杂对花岗岩机制砂UHPC的工作性能和力学性能的影响规律,并与河砂UHPC进行了对比.结果表明,机制砂UHPC的流动性低于河砂UHPC,且随石粉含量的增加而显著降低,机制砂UHPC的抗压强度、抗弯拉强度和弹性模量随石粉含量的增加呈先增大后降低趋势,当石粉含量≥10% 时,机制砂UHPC的各项力学性能高于河砂UHPC.在钢纤维总体积掺量保持2% 不变情况下,随钢纤维长度增加,UHPC的流动性降低,力学性能增大;当1% 的长度13 mm平直钢纤维和1% 的长度20 mm端勾钢纤维混杂时,机制砂UHPC的各项力学性能最佳.  相似文献   

10.
为研究平直型钢纤维体积掺量及长径比对超高性能混凝土(U HPC)施工及力学性能的影响,选用四种镀铜平直型钢纤维,设计并制备了12组不同钢纤维体积掺量(0 ~4%,长径比均为65)及长径比(65、80、90、100,对应钢纤维体积掺量均为2.5%)的UHPC试件.通过扩展度、抗压强度和四点弯曲试验,得到了各组UHPC的扩展度、抗压强度、抗折强度及弯曲应力-挠度曲线;基于UHPC弯曲应力-挠度曲线,并结合CECS13:2009计算了UHPC的弯曲韧性指数.结果 表明:随着钢纤维体积掺量的增加,UHPC的扩展度呈下降趋势,UHPC抗压、抗折强度、弯曲韧性指数基本呈增加趋势,对应最佳钢纤维体积掺量分别为4%(平均值174.4 MPa)、3.5%(平均值46.18 MPa)和4%;随着钢纤维长径比的增大(钢纤维体积掺杂量2.5%不变),UHPC扩展度呈下降趋势,抗压、抗折强度平均值及弯曲韧性指数呈增加趋势;其中,抗压、抗折强度最大值分别为173.53 MPa和44.9 MPa.  相似文献   

11.
This paper performs numerical simulations of dynamic splitting tensile tests to study the dynamic properties of FRC materials. A two-dimensional mesoscale model is developed with consideration of the fibres, aggregates, and cement mortar. The FRC models with hooked-end fibres and newly developed spiral fibres are developed to investigate the effect of fibre shape on the dynamic properties of FRC material, such as the dynamic increase factor (DIF), the energy absorption capacity and the crack opening velocity. Accuracy of the numerical models for two types of FRC materials with 1% fibre content is verified with the experimental results. The effect of fibre content on the dynamic properties of the two FRC materials is also investigated. Numerical results demonstrate that the proposed mesoscale model can reliably simulate the dynamic splitting tests of FRC materials. They also demonstrate the effectiveness of the spiral FRC in resisting the dynamic tensile loads as compared to the conventional hooked-end FRC.  相似文献   

12.
从配合比的优化设计入手制备了自密实超高性能混凝土(UHPC),并对其性能进行了研究.首先,通过最紧密堆理论确定三种不同粉体组成的基体;分析了减水剂对基体的流动性、强度以及水化放热过程的影响.在上述实验的基础上,优选出一组基体,与相对较低掺量的高效减水剂相结合,制备出自密实UHPC,并对其自密实性能和力学性能进行研究.研究结果表明:优选的水泥粉煤灰基体在减水剂掺量为2.3%(23 kg/m3)时制备的UHPC,达到自密实混凝土的自密实性能要求;极限拉伸应变为2.5‰,韧性指数I5、I10、I20分别为7.1,15.6,30.8,均符合UHPC的力学性能指标.  相似文献   

13.
相比于硅灰,沸石粉是一种可就地取材、价格低廉的矿物掺合料。采用沸石粉取代硅灰制备超高性能混凝土(UHPC),研究了沸石粉掺量、水胶比和钢纤维体积掺量对沸石粉UHPC力学性能的影响。结果表明:沸石粉取代部分硅灰降低了UHPC的3 d强度,而随着龄期的增加,15%(质量分数)取代率的沸石粉增加了其强度,30%(质量分数)沸石粉取代率影响不大;沸石粉有助于改善UHPC后期韧性;水胶比的增加降低了沸石粉UHPC强度,但水胶比为0.16和0.14的试件强度相差不大;适量钢纤维有助于提高沸石粉UHPC强度,其最佳体积掺量范围为2.5%~3.0%。  相似文献   

14.
Packing Density of Binary Mixtures of Wet Spheres   总被引:1,自引:0,他引:1  
An experimental study of the packing of binary mixtures of coarse spheres with the addition of water has been conducted. The results indicate a similarity between dry and wet packings, either in the relationship between the packing density and the moisture content or in the relationship between the packing density and the particle-size distribution. The Westman equation is used to describe the wet packing after necessary modification. The approach is verified by the good agreement between the calculated and measured packing densities.  相似文献   

15.
为提高粉煤灰的综合利用率,降低原料成本,采用未经磨细和分选的原状粉煤灰等质量替代硅灰来制备超高性能混凝土(UHPC),并研究了不同掺量的原状粉煤灰对UHPC力学性能及微观结构的影响。结果表明:原状粉煤灰的掺入可使UHPC中胶凝材料的粒度呈梯度分布,形成良好的微级配;并且使新拌混凝土的流动度增大,影响了钢纤维在UHPC基体中的分布;当原状粉煤灰掺重不超过30%时,UHPC抗折强度随着原状粉煤灰掺量的增加呈现不同程度的增长,30%原状粉煤灰掺量的UHPC抗折强度与不掺粉煤灰的空白样相比提高了34%;由于原状粉煤灰水化缓慢,当原状粉煤灰掺量在0%~40%时,UHPC抗压强度随着原状粉煤灰掺量的增加有所下降。孔结构分析表明:UHPC的平均孔径以及总孔体积均随着原状粉煤灰的掺入而减小,基体更加密实;当原状粉煤灰掺量为30%时,SEM照片显示钢纤维与UHPC基体结合紧密,界面黏结增强。  相似文献   

16.
超高性能混凝土立方体抗压强度尺寸效应   总被引:4,自引:0,他引:4  
苏捷  刘伟  史才军  方志 《硅酸盐学报》2021,49(2):305-311
通过5种几何尺寸、3个强度等级和4种钢纤维掺量的超高性能混凝土(UHPC)立方体试件的抗压试验,研究了强度等级和钢纤维体积掺量等对UHPC立方体抗压强度及尺寸效应的影响,结果表明:UHPC立方体试件抗压强度的尺寸效应随强度等级的增加而趋于明显,R160级UHPC基体抗压强度尺寸效应度约为R120级UHPC基体的1.72倍。钢纤维掺量对UHPC抗压强度尺寸效应有较大影响,掺入3%钢纤维UHPC立方体试件抗压强度尺寸效应度比未掺加钢纤维的试件提高了46%。提出了UHPC立方体抗压强度尺寸换算系数建议值,建立了UHPC抗压强度尺寸效应律中参数的计算公式,可用于UHPC立方体抗压强度的分析计算。  相似文献   

17.
泡沫陶瓷环形填料的流体力学和传质性能   总被引:5,自引:3,他引:2       下载免费PDF全文
杨东杰  邱学青  庞煜霞  楼宏铭 《化工学报》2005,56(11):2077-2081
填料是化工气液传质设备中的核心组成部分,其作用主要是为气液或液液两相提供充分的接触面,强化两相间的传质或传热过程.填料的结构和性能对填料塔的技术经济指标具有决定性的影响.陶瓷填料具有耐腐蚀、价格低廉、润湿性与热稳定性好等特点.但其加工性能差,只能做成简单形状,与其他材质的填料相比,比表面积和空隙率都比较小,流动阻力大,传质性能较差,使其应用受到了一定的限制.  相似文献   

18.
为促进钢铁企业废渣的无害化处理与资源化利用,将钢渣制成微粉替代石英粉制备生态型超高性能混凝土(UHPC)是其再利用的有效途径之一。针对配制钢渣微粉UHPC的原材料因素影响问题,采用正交试验法对不同配合比下钢渣微粉UHPC的抗压、抗折、劈裂抗拉等强度指标及弹性模量进行测试,以分析硅灰、钢渣微粉、河砂和钢纤维四种原材料掺量对其各项性能指标的影响效果。结果表明:钢纤维体积掺量对钢渣微粉UHPC的各项力学性能影响最为显著,河砂、钢渣微粉掺量影响程度较大,硅灰掺量影响程度较小;立方体抗压强度、抗折强度、静力受压弹性模量指标下的显著性影响顺序为钢纤维>河砂>钢渣微粉>硅灰,轴心抗压强度、劈裂抗拉强度指标下的显著性影响顺序为钢纤维>钢渣微粉>河砂>硅灰;经正交试验得出最佳配合比方案,按该方案制备的钢渣微粉UHPC具有良好的工作性能与力学性能。  相似文献   

19.
The development of deformation of needle-punch materials is a stepwise process related to overcoming the friction between fibres and subsequent redistribution of the load on the active fibres. The development of tensile strain of less than 10% is determined by the fibre packing density attained during needle-punching. In stretching by more than 10%, the dependences of the deformation and strength characteristics of the material on the needle-punching density coincide and have maximum values at the critical value of the needle-punching density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号