首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this work was to study the role of cesium in sodium‐based geopolymer and its thermal stability for nuclear waste management. A series of mixed sodium and cesium geopolymer samples (Na1?x Cs x )2O·Al2O3·SiO2·12H2O (referred to as (Na1? x Cs x )‐GP, where x = 0, 0.08, 0.15, 0.42, 1) have been prepared. All geopolymer samples were heated at 1100°C for 24 h. Pollucite (CsAlSi2O6) and feldspathoid (CsAlSiO4) were crystallized from Cs‐GP. Nepheline (NaAlSiO4) and a small amount of crystallized silica were obtained from Na‐GP. The other geopolymers (Na1? x Cs x )‐GP (x = 0.08, 0.15, 0.42) led to pollucite and nepheline main phases. Amorphous silica phase was observed in all the geopolymer samples with various amounts. Phase quantification and scanning electron microscope revealed that higher Cs concentrations in Na‐GP tend to decrease the amorphous phase while improving pollucite and nepheline phase quantification. The amorphous geopolymers have also been studied by pair distribution function analysis. Tetrahedral chains formed by T–O bonding (with T = Si, Al) were shown to be more tighten around Cs+ than around Na+. It led to shorter Cs–T bond than Na–T bond matching the higher solvation property of Na+. Furthermore, thermal study analysis pointed out the fact that geopolymer samples (Na1? x Cs x )‐GP, can be considered as solid solutions.  相似文献   

2.
The purpose of this work was to study the role of lithium in cesium‐based geopolymers and the thermal evolution during heat treatment together with thermal expansion behavior of the resulting geopolymer ceramic. A series of lithium‐substituted cesium‐based geopolymers, Cs(1?x)LixGP (where x = 0, 0.1, 0.2, and 0.3), were prepared. All the geopolymer samples were heated at 1300°C for 2 h and thermal evolution on heating was studied by a variety of techniques. Phase composition, microstructure evolution, and thermal expansion behaviors of the ceramics derived from the geopolymers were characterized. All the geopolymer specimens exhibited similar thermal evolutionary trends. With increases in lithium content, overall mass loss increased gradually due to the higher hydration energy of Li+ than Cs+. Thermal shrinkage of these specimens can be divided into four stages, i.e., structural resilience, dehydration, dehydroxylation, and sintering, according to the dilatometer results. The introduction of Li results in two‐step sintering behavior for the lithium‐substituted cesium‐based geopolymers. The average thermal expansion coefficient (CTE) of Cs(1?x)LixGP ceramics decreased from 4.80 × 10?6 K?1 (x = 0) to 3.61 × 10?6 K?1 (x = 0.3) with increase in lithium substitution. The reason can be attributed to the presence of spodumene after thermal treatment, which has a relatively low thermal expansion coefficient compared with pollucite. Meanwhile, molten spodumene could serve as a buffer phase between pollucite crystals also conducive to the decline of CTE of this system.  相似文献   

3.
As an analogue of the mineral pollucite (CsAlSi2O6), CsTiSi2O6.5 is a potential host phase for radioactive Cs. However, as 137Cs and 135Cs transmute to 137Ba and 135Ba, respectively, through the beta decay, it is essential to study the structure and stability of this phase upon Cs → Ba substitution. In this work, two series of Ba/Ti‐substituted samples, CsxBa(1?x)/2TiSi2O6.5 and CsxBa1?xTiSi2O7?0.5x, (x = 0.9 and 0.7), were synthesized by high‐temperature crystallization from their respective precursors. Synchrotron X‐ray diffraction and Rietveld analysis reveal that while CsxBa(1?x)/2TiSi2O6.5 samples are phase‐pure, CsxBa1?xTiSi2O7?0.5x samples contain Cs3x/(2+x)Ba(1?x)/(2+x)TiSi2O6.5 pollucites (i.e., also two‐Cs‐to‐one‐Ba substitution) and a secondary phase, fresnoite (Ba2TiSi2O8). Thus, the CsxBa1?xTiSi2O7?0.5x series is energetically less favorable than CsxBa(1?x)/2TiSi2O6.5. To study the stability systematics of CsxBa(1?x)/2TiSi2O6.5 pollucites, high‐temperature calorimetric experiments were performed at 973 K with or without the lead borate solvent. Enthalpies of formation from the constituent oxides (and elements) have thus been derived. The results show that with increasing Ba/(Cs + Ba) ratio, the thermodynamic stability of these phases decreases with respect to their component oxides. Hence, from the energetic viewpoint, continued Cs → Ba transmutation tends to destabilize the parent silicotitanate pollucite structure. However, the Ba‐substituted pollucite co‐forms with fresnoite (which incorporates the excess Ba), thereby providing viable ceramic waste forms for all the Ba decay products.  相似文献   

4.
Barium‐substituted CsAlSi2O6 pollucites, CsxBa(1?x)/2AlSi2O6, and barium‐ and iron‐substituted pollucites, CsxBa(1?x)/2AlxFe1?xSi2O6 and CsxBa1?xAlxFe1?xSi2O6 were synthesized with 1 ≥ x≥ 0.7 using a hydrothermal synthesis procedure. Rietveld analysis of X‐ray diffraction data confirmed the substitution of Ba for Cs and Fe for Al, respectively. The crystallographic analysis also describes the effects of three different types of pollucite substitutions on the pollucite unit cell: Ba2+ for Cs1+ cation results in little effect on cell dimensions, intermediate concentrations of Ba2+ and Fe3+ substitution result in net minor expansion due to Fe3+ addition, and large Ba and Fe substitutions result in overall framework contraction. Elemental analysis combined with microscopy further supports the phase purity of these new phases. These materials can be used to study the stability of CsAlSi2O6 as a durable ceramic waste form, which could accommodate with time Cs and its decay product, Ba. Furthermore, success in iron substitution for aluminum into the pollucite lattice predicts that redox charge compensation for Cs cation decay is possible.  相似文献   

5.
In this paper, a high temperature treatment procedure was designed to evaluate the effect of holding temperature on thermal evolution process of Li+ substituted Cs-based geopolymer (Cs0.7Li0.3GP), including the thermal analysis, phase composition and microstructure evolution. With rising of holding temperature, amorphous unheated Cs0.7Li0.3GP gradually transformed into a multiphase system during the high temperature treatment process, which consisted of pollucite (CsAlSi2O6), spodumene (LiAlSi2O6) and amorphous glass phase. In the multiphase system, Cs+ ions were in the form of pollucite grains, while Li+ ions were in the form of spodumene nanocrystallines distributed in amorphous matrix. The pollucite grains gradually coarsened with rise in holding temperature, and the densification of the resulting products were also improved synchronously, which were related to the presence of amorphous glass phases. The amorphous glass phase would be in a molten state when holding temperature over 800?°C. And the presence of molten amorphous phase would make the mass transfer process easier, which could contribute to the growth of the crystal grains and the elimination of the pores.  相似文献   

6.
Rare‐earth (RE) titanate pyrochlore with perovskite‐layered structure is a well‐known engineering material in applied in many field. In this work, a red‐emitting phosphor of Gd2?xNaxTi2?2xSb2xO7:Eu3+ (x = 0‐0.5) was developed via cation substitutions of (Sb5+→Ti4+) and (Na+→Gd3+) in Gd2Ti2O7. The motivation is based on the fact that the introduction of cation‐disorders has been regarded to be an effective approach for improving the luminescent efficiency and thermal stability of RE‐activated materials. All the samples were synthesized via facile solid‐state reaction method. The morphology properties were measured via SEM and EDS measurements. The structural Rietveld refinement was performed to investigate the microstructure in pyrochlore lattices. The luminescence properties of Gd2?xNaxTi2?2xSb2xO7:0.15Eu3+ (x = 0‐0.5) has a strict dependence on the cation substitution levels. The band energy of Gd2Ti2O7 is 2.9 eV with a direct transition nature. The incorporation of Sb5+ and Na+ in the lattices moves the optical absorption to a longer wavelength. The cation disorder results in significant improvements of luminescence intensity, excitation efficiency in the blue region, longer emission lifetime and thermal stability.  相似文献   

7.
Na‐ion conducting Na1+x[SnxGe2?x(PO4)3] (x = 0, 0.25, 0.5, and 0.75 mol%) glass samples with NASICON‐type phase were synthesized by the melt quenching method and glass‐ceramics were formed by heat treating the precursor glasses at their crystallization temperatures. XRD traces exhibit formation of most stable crystalline phase NaGe2(PO4)3 (ICSD‐164019) with trigonal structure. Structural illustration of sodium germanium phosphate [NaGe2(PO4)3] displays that each germanium is surrounded by 6 oxygen atom showing octahedral symmetry (GeO6) and phosphorous with 4 oxygen atoms showing tetrahedral symmetry (PO4). The highest bulk Na+ ion conductivities and lowest activation energy for conduction were achieved to be 8.39 × 10?05 S/cm and 0.52 eV for the optimum substitution levels (x = 0.5 mol%, Na1.5[Sn0.5Ge1.5(PO4)3]) of tetrahedral Ge4+ ions by Sn4+ on Na–Ge–P network. CV studies of the best conducting Na1.5[Sn0.5Ge1.5(PO4)3] glass‐ceramic electrolyte possesses a wide electrochemical window of 6 V. The structural and EIS studies of these glass‐ceramic electrolyte samples were monitored in light of the substitution of Ge by its larger homologue Sn.  相似文献   

8.
Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na(1?3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1?3x)/2La(1+x)/2TiO3 and Na(1?3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used.  相似文献   

9.
An equilibrium study of the Na+-K+-H+ ion exchange on γ-titaniura phosphate has been carried out. Isotherms for the ion exchange have been determined and phases formed during the exchange have been identified. Over the entire composition range, the exchanger greatly prefers potassium to sodium.

For 0-25% of exchange, the sodium and potassium 25% conversion phases were found to be at equilibrium when the ratio of the sodium-potassium ion concentration of the solution is 30:1. The equilibrium constant is determined and compared with the obtained from the results of the binary systems. For 25-50% of exchange, the H1.5 K0.5 and HK phases co-exist, the small sodium ion concentration in solid phase being in substitution solid solution. When the 50% exchange is reached by the addition of the stoichiometric amount of base, a solid solution of HNaxK1-x formula (with a composition varying with the equilibrium solution composition), is formed. The equilibrium constant for the substitution process Na+ -K+ in the HNaxK1-xphase is determined. A phase diagram of the ternary system is given.  相似文献   

10.
Nano‐sized (i) N‐doped sodium trititanate and (ii) N and Cu2+ (Ag+) co‐doped sodium trititanates CuTi3NO6?x (Ag2Ti3NO6?x) were prepared by a solid‐state and ion‐exchange methods, respectively. The materials were characterized by EDS, PXRD, XPS, FESEM, TEM, UV–visible DRS, and Raman spectroscopy. All the materials were crystallized in monoclinic lattice with P21/m space group. The bandgap energy of all the samples was deduced from their UV–visible DRS profiles. Visible‐light‐induced photocatalytic oxidation of the methylene blue (MB) and methyl orange (MO), cyclohexene and phenol, was examined. The Ag+ co‐doped trititanate exhibited the highest photocatalytic activity among the materials investigated.  相似文献   

11.
A series of novel red‐emitting Ca8ZnLa1?xEux(PO4)7 phosphors were successfully synthesized using the high‐temperature solid‐state reaction method. The crystal structure, photoluminescence spectra, thermal stability, and quantum efficiency of the phosphors were investigated as a function of Eu3+ concentration. Detailed analysis of their structural properties revealed that all the phosphors could be assigned as whitlockite‐type β‐Ca3(PO4)2 structures. Both the PL emission spectra and decay curves suggest that emission intensity is largely dependent on Eu3+ concentration, with no quenching as the Eu3+ concentration approaches 100%. A dominant red emission band centered at 611 nm indicates that Eu3+ occupies a low symmetry sites within the Ca8ZnLa(PO4)7 host lattice, which was confirm by Judd‐Ofelt theory. Ca8ZnLa1?xEux(PO4)7 phosphors exhibited good color coordinates (0.6516, 0.3480), high color purity (~96.3%), and high quantum efficiency (~78%). Temperature‐dependent emission spectra showed that the phosphors possessed good thermal stability. A white light‐emitting diode (LED) device were fabricated by integrating a mixture of obtained phosphors, commercial green‐emitting and blue‐emitting phosphors into a near‐ultraviolet LED chip. The fabricated white LED device emits glaring white light with high color rendering index (83.9) and proper correlated color temperature (5570 K). These results demonstrate that the Ca8ZnLa1?xEux(PO4)7 phosphors are a promising candidate for solid‐state lighting.  相似文献   

12.
Synthetic polymer plates (GPs) with high surface energy were prepared by the two-step copolymerization process previously reported, using diethylene glycol bis(allyl carbonate) (CR-39) as M1 monomer and unsaturated sulfonates [sodium vinyl sulfonate (VS?Na+), potassium styrene sulfonate (StS?K+), and sodium 2-sulfoethyl methacrylate (SEM?Na+)] as M2 monomer. The contact angle (θH) of water for the acid-treated (immersed in an aqueous 0.1 N HCl solution for 2 h) GPs decreased in the order StS?K+, VS?Na+, and SEM?Na+. In the case of M2 = SEM?Na+, the θH value was about 20°. By adding NaCl in the immersion solution and changing the pH of the immersion solution, the θH values for the CR-39–SEM?Na+ GPs were lowered to 18.9 and 13.1°, respectively. The θH values for the above GPs were smaller than those for the CR-39–acrylic acid or the CR-39–methacrylic acid GPs in the previous report, whereas the contact angle (θNa) of water for the former after alkali treatment (immersed in an aqueous 0.1 N NaOH solution for 2h) was larger than those for the latter. The former had durability of water wettability superior to the latter because of the difference in dissociation characteristic of the respective functional group.  相似文献   

13.
Transformation of electrical transport from ionic to polaronic in glasses, which are a potential class of new cathode materials, has been investigated in four series containing WO3/MoO3 and Li+/Na+ ions, namely: xWO3–(30?0.5x)Li2O–(30?0.5x)ZnO–40P2O5, xWO3–(30?0.5x)Na2O–(30.5x)ZnO–40P2O5, xMoO3–(30?0.5x)Li2O–(30?0.5x)ZnO–40P2O5, and xMoO3–(30?0.5x)Na2O–(30?0.5x)ZnO–40P2O5, 0 ≤ x ≤ 60, (mol%). This study reports a detailed analysis of the role of structural modifications and its implications on the origin of electrical transport in these mixed ionic‐polaron glasses. Raman spectra show the clustering of WO6 units by the formation of W–O–W bonds in glasses with high WO3 content while the coexistence of MoO4 and MoO6 units is evidenced in glasses containing MoO3 with no clustering of MoO6 octahedra. Consequently, DC conductivity of tungstate glasses with either Li+ or Na+ exhibits a transition from ionic to polaronic showing a minimum at about 20‐30 mol% of WO3 as a result of ion‐polaron interactions followed by a sharp increase for six orders of magnitude as WO3 content increases. The formation of WO6 clusters involved in W‐O‐W linkages for tungsten glasses plays a key role in significant increase in DC conductivity. On the other hand, DC conductivity is almost constant for glasses containing MoO3 suggesting an independent ionic and polaronic transport pathways for glasses containing 10‐50 mol% of MoO3.  相似文献   

14.
A kind of novel poly(phenylene sulfide)s (PPSs) containing a chromophore group were synthesized by the reaction of dihalogenated monomer and sodium sulfide (Na2S.xH2O) via nucleophilic substitution polymerization under high pressure. The polymers were characterized by Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, XRD, DSC, TGA, mechanical testing and dissolvability experiments. The intrinsic viscosity of the polymers obtained with optimum synthesis conditions was 0.22 ? 0.38 dl g?1 (measured in 1‐chloronaphthalene at 208 °C). These polymers were found to have good thermal performance with a glass transition temperature (Tg) of 90.5 ? 94.6 °C and initial degradation temperature (Td) of 475–489 °C, showing improved thermal properties compared with homo‐PPS. At the same time the resultant resins had a high tensile strength of 67.5 ? 74.1 MPa and compressive strength of 70.7 ? 85.4 MPa. Additionally, these polymers exhibited a weak UV ? visible reflectivity minimum at 450–570 nm, and the fluorescence spectra of the polymers showed maximum emission around nearly 370 nm. Also they showed excellent chemical resistance and another special property ? bright shiny colors changed into different colors in acid solution. © 2014 Society of Chemical Industry  相似文献   

15.
The ceramics of dysprosium tantalate (DyTaO4) doping with Al3+ (the doping content are 0, 2, 4, and 6 mol%, respectively) are successfully synthesized in this work. The results of transmission electron microscopy (TEM) reveal that the DyTaO4 has the domains within ferroelasticity. The thermal properties indicate that the (AlxDy1?x)TaO4 ceramics have much lower thermal conductivity and better high‐temperature phase stability than that of 8YSZ (yttria‐stabilized zirconia). The elastic properties imply that the (AlxDy1?x)TaO4 have lower elastic properties than that of DyTaO4. The values of Young's modulus of (AlxDy1?x)TaO4 range from 82 to 135 GPa, and the thermal expansion coefficients (TEC) of (AlxDy1?x)TaO4 vary in the range of (6‐10) × 10?6 K?1 when the temperature is below 1200°C.  相似文献   

16.
X‐ray powder diffraction studies and physicochemical studies have been carried out of the hydrate phases formed in binary water systems with crosslinked tetrabutylammonium (TBA) polyacrylates (n = 1%) in mixed [x(C4H9)4N + (100?x)H] form with low degrees of substitution of proton ions of the carboxylic groups in poly(acrylic acid) for TBA cations x = 40%, 30%, and 20%. As was shown by structural studies, the clathrate hydrate is formed in the water system with the polyacrylate in the mixed form with x = 40%. The structure is analogous to that of earlier studied hydrates formed by crosslinked polyacrylates in mixed [x(C4H9)4N + (100?x)H] form with higher values of x = ~100%, 80%, and 60% and can be related to the tetragonal structure I, characteristic of the ionic clathrate hydrates of TBA salts with monomeric anions. Decomposition temperature and fusion enthalpy of the studied hydrate were determined using differential thermal analysis and calorimetric methods. It was revealed that the further decrease of x led to the destruction of clathrate hydrate framework. According to the results of X‐ray powder diffraction research, the phase of ice is crystallized instead of the hydrate phase in water systems with the polyacrylates with x = 30% and 20%. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46209.  相似文献   

17.
While the reddish‐orange emitting phosphors M2Si5N8:Eu2+(M = Ca, Sr) have been intensively investigated as potential materials for white‐light‐emitting diodes, in this study, optical energy storage properties of (Ca1?xSrx)2Si5N8: Eu2+, Tm3+ (x = 0–1) solid solutions were tuned by cation substitution, which was commonly used to tune color point for improving w‐LEDs. Partial substitution of either Ca by Sr or Sr by Ca resulted in a redshifted Eu2+ emission which had a demarcation point at x = 0.5. Furthermore, the (Ca1?xSrx)2Si5N8: Eu2+, Tm3+ materials exhibited similar persistent‐ and photostimulated luminescence behaviors with a maximum intensity at about x = 0.2. Such optical energy storage characters of the samples were attributed to the more appropriate trap depths (322–333 K) and higher density of energy level traps indicated by the thermoluminescence analysis.  相似文献   

18.
《分离科学与技术》2012,47(8):1793-1807
Abstract

In the present work, a study of the kinetics of adsorption of Cs+, Co2+, and Sr2+ on four hydrous titanium oxides, prepared in different media, and designated as Ti‐I, Ti‐II, Ti‐III, and Ti‐IV, was carried out. In the aqueous medium, the internal diffusion coefficients, Di for Cs+ were found to be equal to 3.7×10?9, 3.7×10?9, 2.3×10?9, and 1.5?10?9 cm2/s, in Ti‐I, Ti‐II, Ti‐III, and Ti‐IV, respectively. For Co2+ and Sr2+, these values are equal to 0.96×10?9 and 0.64×10?9 cm2/s, respectively for Ti‐IV. In Ti‐IV, Di for all ions generally increases on adding methanol or propanol. This is probably due to greater dehydration, leading to faster ion diffusion, and, hence, to a decrease of ion mobility due to stronger interaction with the surface. In all media in Ti‐IV, the order: Di(Cs+)>Di(Co2+)≥Di(Sr2+) was found which is due to a stronger interaction of the bivalent ions with the exchange sites.  相似文献   

19.
Piezoelectric energy harvesting is the most widely investigated technology for renewable energy applications. In this work, (1-x)(Na0.5K0.5)NbO3-xLiSbO3 piezoelectric ceramics were prepared through conventional mixed oxide fabrication methods with different sintering temperatures. Although the (Na0.5K0.5)NbO3 piezoelectric material is representative among the lead-free ceramics, it is difficult to densify by typical sintering techniques owing to its easy evaporation properties of potassium (K+) and sodium ion (Na+). Hence, lithium (Li+) and antimony ion (Sb5+) were used for the partial substitution of (Na0.5K0.5)NbO3. With the optimized sintering temperature, Li+ and Sb5+ are expected to be crucial in increasing the density and enhance the piezoelectric and ferroelectric properties. In this study, the phase, microstructure, and dielectric and electrical properties of (1-x)(Na0.5K0.5)NbO3-xLiSbO3 ceramics depending on the sintering temperature is examined by employing X-ray diffraction, field emission scanning electron microscopy, impedance analyzer, and mechanical force system for energy harvesting.  相似文献   

20.
Two intermediate compounds of the system Ca2SiO4Ca3(PO4)2CaNaPO4 were synthesized by reaction sintering at 1600°C and analyzed structurally, chemically, and optically. The structure of Ca7(PO4)2(SiO4)2 nagelschmidtite (space group P61, a = 10.7754(1) Å, c = 21.4166(3) Å) was determined by single crystal X‐ray analysis. Its unit cell can be interpreted as a supercell (≈ × a, 3 × c) of the high‐temperature polymorph α‐Ca2SiO4. Evidence for pseudo‐hexagonal symmetry is shown. Using electron microprobe, the solid solution Ca7?xNax(PO4)2+x(SiO4)2?x, (x ≤ 2), of nagelschmidtite was confirmed. Volume thermal expansion coefficients of Ca6.8Na0.2(PO4)2.2(SiO4)1.8 and Ca5.4Na1.5(PO4)3.7(SiO4)0.3 were determined using high‐temperature X‐ray powder diffraction, yielding mean αV = 3.95 and 5.21 [×10?5/°C], respectively. Ca15(PO4)2(SiO4)6 is a distinct phase in the binary section Ca2SiO4Ca3(PO4)2 and was found to extend into the ternary space according to Ca15?xNax(PO4)2+x(SiO4)6?x, (x ≤ 0.1). Quenching experiments of the latter allowed for structural analysis of a strongly disordered, defective high‐temperature polymorph of the α‐Ca2SiO4α‐Ca3(PO4)2 solid solution. Structural relations between nagelschmidtite, Ca15(PO4)2(SiO4)6 and the end‐member compounds of the system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号