首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
王晶  倪金荧  王利群  卿青  严生虎  张跃 《化工进展》2021,40(7):4021-4026
经高温碱性盐法预处理的玉米秸秆预处理液中木质素和碱性盐含量高,为了反复利用含盐预处理液,需脱除其中的可溶性木质素。本实验从腐木中筛选分离到一株木质素降解菌株CCZU-WJ6,通过形态学观察和16S rDNA序列分析,鉴定该菌株属于无色杆菌属(Achromobacter sp.)。测定了CCZU-WJ6木质素降解相关酶的活性,及其在玉米秸秆预处理液中的生长趋势、预处理液的COD去除率和木质素降解率,通过GC-MS和FTIR检测预处理液中组分及其化学键的变化。通过单因素实验确定了菌株CCZU-WJ6处理预处理液的最佳条件为pH 7.0、温度30℃、预处理液稀释倍数10倍、接菌量0.5g/mL。在处理6天后,预处理液COD脱除率为40.9%,木质素的降解率为32.1%,CCZU-WJ6分泌木质素过氧化物酶和锰过氧化物酶的酶活分别达到215.5U/L、200.1U/L。CCZU-WJ6会破坏木质素结构中的苯环结构、醚键以及C=O键,降解产物中含有愈创木酚和对香豆酸,推断其降解途径为β-芳基醚代谢途径和阿魏酸代谢途径。CCZU-WJ6可用来处理含木质素的工业废水,在工业方面具有广阔的应用前景。  相似文献   

2.
唐亮  廖强  夏奡  黄云  朱贤青  朱恂 《化工进展》2021,40(10):5378-5387
白蚁-真菌自然共生体系可有效转化木质纤维素类生物质,其本质在于对木质素物理结构的破坏和官能团的修饰,减少木质素对酶的非生产性吸附,从而提升酶解糖化效率,为生物质高效能源化利用提供新思路。本文基于白蚁肠道中存在的分解木质素酚类单元的漆酶(La)和蚁巢内降解木质纤维素的蚁巢伞菌(Te),构建La和Te协同预处理木质素体系,比较La和典型的木质素降解菌黄孢原毛平革菌(PC)对木质素模型化合物碱木素的预处理特性。结果表明,在降解La预处理的碱木素过程中,Te产生的漆酶(La)和木质素过氧化物酶(LiP)活性最大值较未处理的碱木素样品分别提升43.3%、58.5%,PC产生的漆酶(La)和锰过氧化物酶(MnP)活性最大值较未处理的碱木素样品分别提升35.9%、31.6%。漆酶预处理强化了Te、PC对碱木素官能团的修饰和物理结构的破坏。傅里叶红外转换光谱分析(FTIR)表明酶菌协同体系处理后碱木素特征官能团的吸收峰显著降低。扫描电镜(SEM)和压汞测试结果表明酶菌协同体系对碱木素表面结构破坏严重,La和Te协同(La+Te)体系预处理后的碱木素平均孔径比单一La和单一Te分别显著提升31.1%、45.6%。经La+Te体系预处理后的碱木素最大酶吸附量较未处理的碱木素减少了51.5%,由于非生产性吸附显著减少,后续纤维素酶的转化率较未处理的碱木素样品提高了71.5%。本文证明了通过漆酶与真菌协同作用可有效改变碱木素物化特性,从而有效促进后续纤维素的酶解糖化,为木质纤维素类生物质高效利用提供指导。  相似文献   

3.
以玉米秸秆为原料,先经复合菌系进行好氧生物预处理,然后接种厌氧污泥进行厌氧发酵,考察了预处理时间对厌氧发酵的影响,并测定木质纤维素结构及含量变化、关键性酶活、微生物多样性和厌氧发酵酸化产量。研究结果表明:随着预处理时间的延长,玉米秸秆的结构逐渐被破坏,木质素过氧化物酶活性逐渐降低,木聚糖酶和纤维素酶活性逐渐升高,最高分别达0.879和0.025 7 U/mg。放线菌、芽孢杆菌和曲霉菌是秸秆好氧生物预处理中的优势菌群。玉米秸秆经好氧生物预处理2 d,厌氧发酵产酸效果最佳,乙醇和挥发性脂肪酸产量为249.3 mg/g,比未处理提高了46.73%;玉米秸秆经好氧生物预处理5 d,乙醇和挥发性脂肪酸产量为138.2 mg/g,比未处理降低了18.66%。过长的玉米秸秆好氧预处理时间会使玉米秸秆中半纤维素、纤维素过度降解,这是造成玉米秸秆厌氧发酵产酸量下降的主要原因。以能源化、资源化为目的的玉米秸秆厌氧发酵预处理时,利用复合菌系好氧生物处理作为其预处理方法,应严格控制预处理时间,避免因为纤维素、半纤维素过度降解导致的产品产率下降问题。  相似文献   

4.
采用间歇式水热预处理方法,考察了不同水热预处理温度和处理时间对玉米秸秆主要成分变化的影响以及水热预处理后的纤维素酶解效率。在180~220℃,10~25 min范围内,随温度升高和时间延长预处理后半纤维素移除率和纤维素损失率也随之增大,但木质素质量并未减少反而有所增加。在210℃,25 min时得到最大半纤维素移除率为86.0%。以半纤维素移除率、木质素移除率和纤维素损失率为因变量,处理温度和处理时间为自变量通过多元线性回归分析或二次方程(多元线性回归方程拟合度不佳时)拟合分别获得回归模型。模型显示处理温度和处理时间对三者均具有显著影响。分析敏感性显示处理温度对三种因变量的影响均大于处理时间。经210℃,20 min处理后,纤维素酶解率最高为76.2%,继续提高处理温度和延长处理时间半纤维素移除率提高,但纤维素酶解率下降。  相似文献   

5.
H. Lv  L. Yan  M. Zhang  Z. Geng  M. Ren  Y. Sun 《化学工程与技术》2013,36(11):1899-1906
The process of delignification during the pretreatment of corn stover in supercritical CO2 with ethanol‐water as co‐solvent was investigated. After pretreatment, many lignin droplets were found deposited on the fiber surface which hinder cellulose digestibility. These lignin droplets were removed by ethanol‐water and after washing the optimal glucose yield increased significantly. Lignin degradation reactions competed with condensation reactions during pretreatment. The cleavage of ether bonds and the high solubility of lignin fragments in ethanol‐water co‐solvent were the key factors for lignin removal and degradation behavior during pretreatment.  相似文献   

6.
Long‐term lime pretreatment has proven to increase digestibility of many herbaceous lignocellulose sources; but until this work, its effects had not been evaluated on wood, whose lignin content is higher, and therefore, more recalcitrant to enzymatic hydrolysis. In this study, the mild conditions of long‐term lime pretreatment (1‐atm pressure, temperatures ranging from 25 to 75°C, and reaction times between 1 and 12 weeks, with and without air) were systematically applied to poplar wood available in two batches with different lignin contents. These batches were designated as low‐lignin biomass (LLB) with lignin content of 21.4% and high‐lignin biomass (HLB) with lignin content of 29.1%. Full factorial designs resulted in 79 samples of pretreated poplar that were analyzed for lignin and carbohydrates pretreatment yields, and enzymatic digestibility (15 FPU/g glucan in raw biomass cellulose loading). After aerated lime pretreatment at 65°C for 4 weeks, and subsequent enzymatic hydrolysis, an overall yield of 0.76 g glucan + xylan recovered per gram glucan + xylan in raw biomass was obtained. This is equivalent to an increased poplar wood digestibility of 7.5‐fold compared with untreated biomass. Different batches of the feedstock resulted in different lignin and carbohydrates pretreatment yields; however, overall yields of carbohydrates (combining pretreatment and enzymatic hydrolysis) were similar. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

7.
玉米芯提取木糖后残留了大量富含纤维素和木质素的废弃物。针对玉米芯残渣(corncob residues,CCR)中木质素含量高和半纤维素含量很低的特点,采用碱性亚硫酸盐法进行预处理。研究了预处理pH、液固比、温度、亚硫酸盐用量等条件对纤维素保留率、木质素去除率、底物酶解效率以及预处理液中木质素磺酸钠含量的影响规律。结果表明,当亚硫酸钠用量为10%(质量)、氢氧化钠为5%(质量)、液固比为6:1、160℃预处理1 h时,可去除86.1%的木质素、保留82.4%的纤维素,底物的72 h酶解率达85.1%[酶载量为5 FPU·(g葡聚糖)-1],预处理液中木质素磺酸钠的收率为31.5 g·(100 g CCR)-1。为了指导放大试验和工程应用,提出了一个能准确预测底物木质素含量的参数--木质素因子(lignin factor,LF),在此基础上成功建立了脱木质素反应动力学经验公式以及底物酶解效率的预测方程,预测值与实测值误差在10%之内。  相似文献   

8.
刘乾静  陈晓淼  王芷  史吉平  李保国  刘莉 《化工进展》2022,41(10):5612-5618
为高效去除木质纤维素中的木质素,获得富含纤维素的底物,实现木质纤维素组分的单一分离与组分全利用,制备合成了6种三元低共熔溶剂(deep eutectic solvent, DES),利用DES预处理已去除半纤维素的杨木水解渣,研究了6种低共熔溶剂对木质素去除和纤维素保留的影响,并优化获得了最佳的预处理工艺参数。结果表明,6种DES中苄基三乙基氯化铵-乙二醇-氯化铁(T-EG-Fe)的预处理效果最优,木质素去除率为80.46%,纤维素保留率为90.81%。优化得到T-EG-Fe预处理杨木水解渣最佳工艺条件为:反应固液比为1∶15,反应温度为130℃,反应时间为5h,在最优条件下预处理得到的固体残渣中纤维素质量分数为92.78%,木质素质量分数为5.33%。T-EG-Fe具有高效拆解木质素的潜力,在木质纤维素预处理过程中具有一定的应用价值。  相似文献   

9.
对玉米秸秆进行氢氧化钠/蒽醌(NaOH/AQ)去木质化预处理,考察了预处理温度、时间和NaOH用量对玉米秸秆脱木质素程度的影响,并探讨了脱木质素程度对提高预处理后物料酶解性能的影响。L9(34)正交试验得出较适宜预处理工艺条件为:温度160℃,时间60 min,NaOH用量(以绝干原料质量计)2.8%;其他条件为AQ用量0.05%,固液比1:5(g:mL),此时木质素脱除率为75%,酶解后聚糖转化率达到73.79%。随着物料脱木质素程度的提高,其酶解效率相应增加;当木质素脱除率达到一定程度后,预处理后的聚糖转化率达到最大值,继续提高木质素脱除率,聚糖转化率反而降低。响应面优化的酶水解工艺条件为纤维素酶用量30 FPU/g,β-葡萄糖苷酶10 IU/g,反应时间72 h,温度50℃,底物质量分数2.5%,此时还原糖得率为85.62%。对酶解液进行HPLC分析,酶解液中的葡萄糖质量浓度为14.83 g/L,木糖质量浓度为4.83 g/L。XRD分析显示,预处理前后纤维素的晶型没有变化,而结晶度由31.40%提高至46.91%,表明物料中木质素和半纤维素发生了不同程度的溶出。  相似文献   

10.
Pretreating pine chips (Pinus sylvestris) with sodium hydroxide prior to the alkaline delignification (kraft, kraft-anthraquinone, and soda-anthraquinone) can facilitate the recovery of the carbohydrate degradation products from alkaline pulping liquors. Under suitable pretreatment conditions large amounts of carbohydrate degradation products (aliphatic acids) were formed relative to lignin. The lignin fraction was composed of comparatively low-molecular-weight fragments. Although the delignification was considerably retarded and the yield (based on wood) was decreased by 1–3%, the properties of the resulting pulp were essentially maintained despite pretreatment. Finally, data are given for the composition of aliphatic acids in liquors resulting from pretreatments.  相似文献   

11.
In order to make better use of lignocellulosic biomass for the production of renewable fuels and chemicals, it is necessary to disrupt its recalcitrant structure through pretreatment. Specifically, organosolv pretreatment is a feasible method. The main advantage of this method compared to other lignocellulosic pretreatment technologies is the extraction of high-quality lignin for the production of value-added products. In this study, bamboo was treated in a batch reactor with 70% ethanol at 180 °C for 2 h. Lignin fractions were isolated from the hydrolysate by centrifugation and then precipitated as ethanol organosolv lignin. Two types of milled wood lignins (MWLs) were isolated from the raw bamboo and the organosolv pretreated residue separately. After the pretreatment, a decrease of lignin (preferentially guaiacyl unit), hemicelluloses and less ordered cellulose was detected in the bamboo material. It was confirmed that the bamboo MWL is of HGS type (p-hydroxyphenyl (H), vanillin (G), syringaldehyde (S)) associated with a considerable amount of p-coumarate and ferulic esters of lignin. The ethanol organosolv treatment was shown to remove significant amounts of lignin and hemicelluloses without strongly affecting lignin primary structure and its lignin functional groups.  相似文献   

12.
Non‐food lignocellulosic biomass is the most abundant renewable bioresource as a collectable, transportable, and storable chemical energy that is far from fully utilized. The goal of biomass pretreatment is to improve the enzymatic digestibility of pretreated lignocellulosic biomass. Many substrate factors, such as substrate accessibility, lignin content, particle size and so on, contribute to its recalcitrance. Cellulose accessibility to hydrolytic enzymes is believed to be the most important substrate characteristic limiting enzymatic hydrolysis. Cellulose solvents effectively break linkages among cellulose, hemicellulose and lignin, and also dissolve highly‐ordered hydrogen bonds in cellulose fibers accompanied with great increases in substrate accessibility. Here the history and recent advances in cellulose solvent‐based biomass pretreatment are reviewed and perspectives provided for addressing remaining challenges. The use of cellulose solvents, new and existing, provides opportunities for emerging biorefineries to produce a few precursors (e.g. monosaccharides, oligosaccharides, and lignin) for the production of low‐value biofuels and value‐added biochemicals. © 2012 Society of Chemical Industry  相似文献   

13.
The content and structure of lignin have been considered as important factors that affect both pretreatment and enzymatic hydrolysis of lignocellulosic biomass. In this work, wheat stems (WS) were pretreated using mild alkali including green liquor (GL) and sodium carbonate (SC). The results indicate that GL pretreatment exhibits better delignification selectivity and higher enzymatic digestibility than SC pretreatment. Analysis of 1H–13C HSQC NMR and FTIR on cellulolytic enzyme lignin (CEL) preparations isolated from untreated and pretreated WS also proves that a certain amount of lignin degrades which leads to a decrease of β-O-4′ linkages. Under mild alkaline conditions, more guaiacyl units in lignin are removed than syringyl units, which results in a higher condensation degree and S/G ratio of CELs isolated from GL- and SC-pretreated stems. Compared with p-coumarate structures, ferulates in lignin are more stable under mild alkaline conditions.  相似文献   

14.
岳军  姚兰  赵建  李雪芝  曲音波 《化工学报》2011,62(11):3256-3262
木糖渣是玉米芯经稀酸处理提取木糖后的残余物,一般作为燃料焚烧以提供部分热能。由于其含有丰富的纤维素组分,故可通过生物转化来生产多种化工产品,但残渣中大量木素的存在严重抑制了纤维素酶的水解效率。采用一些有机溶剂预处理可将部分木素溶出,因而可改善物料的酶解性能。采用乙醇对木糖渣进行预处理,研究了预处理条件(如温度、时间、固液比等)对木糖渣化学组分和纤维素酶解转化率的影响,并与玉米秸秆和玉米芯等进行了对比。结果表明预处理降低了木糖渣的木素含量,在固液(质量/体积)比1︰8、处理液中乙醇浓度50%(体积)、预处理温度210℃、预处理时间60 min时,木素脱除率为53.26%,预处理后木糖渣在酶解72 h时的纤维素转化率达到84.42%,比预处理前提高 14.58%。研究还发现,与木糖渣相比,有机溶剂乙醇更适合用于玉米芯和玉米秸秆酶解前的预处理。  相似文献   

15.
植物纤维素原料预处理技术的研究进展   总被引:19,自引:0,他引:19  
对植物纤维素的原料的预处理方法进行了综述,物理方法中,机械粉碎是较常用的方法,但耗能较多;稀酸预处理能有效去除半纤维素,效率较高,但稀酸处理能耗较多且对设备的防腐要求较高;蒸汽爆破处理能有效地分离纤维素、半纤维和木质素,所处理物料酶解转化率高。  相似文献   

16.
木质纤维原料资源储量丰富且可再生,适当的预处理可打破纤维原料细胞壁的天然抗降解屏障,促使其在后续加工中有效转化为低聚糖或可发酵糖,用于高效制备生物乙醇。有机溶剂预处理是有效的预处理方法之一,在提高酶解效率的同时可有效分离木质素,实现纤维原料各组分的高效利用。根据是否添加催化剂,有机溶剂预处理可分为自催化预处理和催化剂-有机溶剂协同预处理2种方式。木质素是限制木质纤维原料酶解的重要因素之一,本文简单介绍了有机溶剂种类、催化剂类型对木质素脱除的影响,并概括性探讨了有机溶剂和催化剂协同的反应机理。  相似文献   

17.
研究了醋酸预处理对稻草主要化学成分及酶水解糖化效率的影响。在160℃下以不同的醋酸用量(0~4%)对稻草进行处理,预处理后稻草的Klason木质素含量基本保持不变,约60%的酸溶木质素被脱除;灰分含量(质量分数)约下降30%,灰分中SiO2则几乎全部保留在预处理浆料中。预处理醋酸用量的增加对酸溶木质素和灰分含量的变化均无显著影响。预处理后高聚糖的降解程度随醋酸用量的增加而上升,其中半纤维素的降解程度尤为显著,阿拉伯聚糖、半乳聚糖大量溶出。对经醋酸预处理稻草的酶水解研究表明,预处理中醋酸用量的增加无助于酶水解液中还原糖得率的提高。稻草于160℃下经不添加醋酸的自水解预处理后,其酶解还原糖得率均高于经醋酸预处理的稻草,当纤维素酶用量为40 FPU/g(对底物)时,稻草中高聚糖的酶水解转化效率最高,葡聚糖、木聚糖的转化率分别为67.8%和45.3%,总糖转化率为58.8%。  相似文献   

18.
木薯酒精渣的处置是制约木薯燃料乙醇大规模产业化的问题之一。本文立足于探索木薯酒精渣利用途径,分析了木薯酒精渣的主要成分,对比了氨水、氢氧化钠、氨水组合稀硫酸3种预处理方式对于木薯酒精渣纤维素和木素含量及纤维素酶水解效率的影响,分析了处理前后木薯酒精渣的表面结构及纤维素结晶度,并以氨水处理后的木薯酒精渣为底物,进行了同步糖化发酵。结果表明,3种预处理方法中组合预处理能更好地增加纤维素含量和提高纤维素酶水解效率,与未处理原料相比,组合预处理后纤维素含量增加了111.26%,木素下降了35.05%,酶水解72h纤维素转化率从42.10%增加到61.71%。氨水预处理后,原料的木素含量降低,处理后木薯酒精渣的表面变得更加粗糙,纤维素结晶度有所增加,以氨水处理后的木薯酒精渣为底物进行分批补料同步糖化发酵,当初始底物浓度为100.0g/L,分别在20h、40h、60h进行补料至最终底物浓度为400.0g/L时,发酵120h乙醇浓度达到51.0g/L。  相似文献   

19.
木质纤维素预处理技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
木质纤维素转化燃料乙醇一般需要经过原料预处理、酶水解和发酵过程。由于木质纤维原料化学结构复杂、直接酶解效率非常低,一般在酶水解之前需要进行适当的预处理以打破其致密结构,增加纤维表面积,提高后续纤维素酶的可及性。预处理程度直接影响纤维底物后续酶水解的效果。本文在木质纤维素常用预处理技术分析的基础上,重点讨论了3种相对高效的预处理技术:微波辅助离子液体预处理、两阶段深度共熔溶剂(DES)预处理和氯化铁预处理技术,分析了它们的优势、不足及发展现状。文中指出微波辅助离子液体预处理可有效解构木质素和半纤维素,破坏纤维素结晶区域,利于后续酶解,但微波加热过程会使离子液体分解和部分底物碳化。两阶段DES预处理可有效提高酶水解效率,但是预处理后原料中残留的DES可能会对后续反应中纤维素酶和微生物产生抑制作用。氯化铁预处理可有效破坏木质素与碳水化合物间的结合键,脱除底物中的半纤维素,而对木质素和纤维素降解较少,具有很好的发展前景。由于单一预处理技术的局限性,寻求低成本高效的联合预处理技术将是未来重点发展的方向。  相似文献   

20.
木质纤维素甲酸预处理及其组分分离   总被引:4,自引:0,他引:4  
以玉米芯为研究对象,提出了常压中温条件下甲酸预处理木质纤维素组分分离的工艺. 在该体系中半纤维素迅速发生水解,大部分木质素被溶解,而纤维素基本不发生水解,经固液分离和甲酸回收实现了玉米芯全组分分离. 考察了预处理温度、时间和甲酸浓度对玉米芯各组分分离效果及水解产物(可溶性糖)含量的影响规律,结果表明,随着反应的进行,甲酸溶液中可溶性糖和木质素量先迅速增大,随后趋于平衡;在50~75℃间对各组分分离的影响不明显. 综合考虑分离效果和成本,选择最佳反应温度为60℃,处理时间为3 h,甲酸浓度为88%(w). 在该条件下,纤维素、半纤维素和木质素回收率分别可达91.4%, 88.5%和63.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号