首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
《化工中间体》2010,(8):30-30
据四川省科技厅报道,作为高品质蓄电池重要的正极材料纳米磷酸铁锂日前在成都市高新区顺利完成中试,并形成600吨/年的生产能力。该项目采用的先进工艺克服了传统方法生产磷酸铁锂成本高、污染大、量产小、质量稳定性差等不足。据介绍,由纳米磷酸铁锂作为正极生产的高品质蓄电池,容量充足、性能稳定,可以实现无记忆的浅充浅发。在锂动力电池产业链中,作为正极材料的磷酸铁锂占锂动力电池成本的30%以上。  相似文献   

2.
退役磷酸铁锂材料资源化再利用研究进展   总被引:1,自引:0,他引:1  
磷酸铁锂电池的产量随着新能源汽车的推广而逐年增加,相应的退役磷酸铁锂电池也大量产生,若不及时处理将会造成环境污染和资源浪费。介绍近几年来退役磷酸铁锂材料资源化再利用的研究进展,包括退役磷酸铁锂材料与集流体分离技术和退役磷酸铁锂材料的再利用技术,其中,退役磷酸铁锂材料的再利用技术包括元素选择性提取、退役磷酸铁锂材料再生等方面,分析了各工艺的优势与不足,最后展望了未来退役磷酸铁锂材料资源化再利用的发展方向。  相似文献   

3.
磷酸铁锂是一种锂离子电池的正极材料,本文介绍了磷酸铁锂的国内外市场需求、产品优势及改性研究目标,通过生产工艺路线优缺点对比及近年来磷酸铁锂价格变化趋势来确定磷酸铁锂今后研究方向,预测了磷酸铁锂发展前景以及行业发展趋势。  相似文献   

4.
磷酸铁锂(LiFePO4)具有高温稳定性较好、循环性能良好、环保等特点,已成为锂离子动力电池正极材料之一。但由于磷酸铁锂电导率低及锂离子扩散速率慢等缺点,制约其在动力电池行业的发展。因此主要从包覆碳材料对磷酸铁锂进行表面改性、对磷酸铁锂进行掺杂、制备亚微米或纳米级的磷酸铁锂或制备特殊形貌的磷酸铁锂3方面进行综述,分析改善磷酸铁锂性能最优的方法,对其未来的发展趋势进行了预测。  相似文献   

5.
马晓华  杨建文  叶璟 《广东化工》2013,(8):60-61,52
以磷酸铁锂为正极材料的锂离子电池以其高容量、高环保、长寿命、低价格等特点,越来越受到研究者的青睐。文章对磷酸铁锂的合成方法、包覆与掺杂改性等的最新研究进展进行了综述,并指出了今后的研究重点。  相似文献   

6.
橄榄石型磷酸铁锂是目前应用十分广泛的锂离子电池正极材料之一,具有成本低、安全性高、环境友好、循环寿命长和工作电压稳定的特点。近年来,随着CTP技术、刀片电池技术等取得的突破性进展,磷酸铁锂的商业化程度得到了大幅提高。但磷酸铁锂存在电子导电性较差和离子扩散系数低的缺陷,严重限制了锂离子电池的电化学容量,因此开展磷酸铁锂制备工艺和性能强化研究对磷酸铁锂的性能提升具有重要意义。对比了磷酸铁锂电池与其他正极材料锂离子电池的性能差异和发展现状,系统总结了磷酸铁锂正极材料制备与强化的改性方法及相关研究进展与挑战,并提出了未来的发展方向与研究思路。  相似文献   

7.
随着磷酸铁锂电池新能源车产销量迅速增长,如何有效回收废旧磷酸铁锂动力电池并实现有价金属的资源化利用已成为研究热点。提出一种钠盐辅助焙烧磷酸铁锂废粉和水浸回收锂盐的工艺。在氧气气氛中磷酸铁锂废粉与一水硫酸氢钠反应生成硫酸钠锂、磷酸铁、三氧化二铁,然后通过选择性浸出、分离、沉淀得到纯度高达99.58%的磷酸锂、纯度达到99.6%的磷酸铁。对一水硫酸氢钠与磷酸铁锂废粉质量比、氧化焙烧温度、焙烧保温时间和焙烧产物水浸时间等工艺条件进行了研究,结果表明一水硫酸氢钠与磷酸铁锂废粉质量比为1.6、氧化焙烧温度为600℃、焙烧保温时间为60 min、焙烧产物室温水浸时间为70 min为最佳回收工艺参数,在此条件下锂离子浸出率为98.7%。该工艺在温和条件下实现了有价金属的选择性回收,有助于废旧磷酸铁锂电池资源化利用。  相似文献   

8.
专利技术     
正一种改性磷酸铁锂材料、制备方法及应用本发明涉及一种改性磷酸铁锂材料、制备方法及应用。该改性磷酸铁锂材料为经金属有机框架物和额外碳源改性获得的金属离子掺杂和碳包覆的磷酸铁锂材料,其中所述金属离子的还原电势小于-0.27 V。制备方法是将额外碳源填充到含有特殊金属离子M的MOFs孔隙中,而后与磷酸铁、锂源和碳还原  相似文献   

9.
控制结晶法制备球形磷酸铁的团聚尺寸模型   总被引:1,自引:0,他引:1  
磷酸铁是制备锂离子电池正极材料磷酸铁锂的主要前躯体之一,磷酸铁的形貌和粒度大小对磷酸铁锂材料的电化学性能有较大影响.为了更好地实现磷酸铁的可控制备,有效改善磷酸铁锂的电化学性能,文中采用硝酸铁和磷酸反应合成磷酸铁的液相结晶控制工艺,研究了反应结晶釜中反应物浓度、温度、搅拌速度与沉淀物颗粒粒径之间的关系,结果表明:沉淀物...  相似文献   

10.
磷酸铁锂具有原料来源广、安全性能高、环境友好等独特的优势,成为锂离子电池正极材料的研究热点之一。前驱体磷酸铁与磷酸铁锂具有类似的结构,在合成磷酸铁锂时具有独特的优势,并且磷酸铁同时提供了铁源和磷源,合成过程中只需要添加锂源便可制备出磷酸铁锂,工艺条件简单可控。其合成方法主要有沉淀法、水热法、溶胶凝胶法等。介绍了不同方法的研究现状、优缺点及下一步的展望。  相似文献   

11.
介绍了新型锂离子电池正极材料磷酸铁锂制备与改性技术,特别介绍了我国磷酸铁锂纳米化、离子掺杂、碳包覆等改性技术和水热合成、溶胶—凝胶法等磷酸铁锂制备技术,阐明了改性技术有利于进一步改进电池电化学性能,以适应混合动力汽车与电动汽车动力电池和风能、太阳能储能设备等对锂离子电池要求。基于磷酸铁锂正极材料发展前景,提出了我国传统磷化工行业调整产品结构,对接新能源材料的发展思路。  相似文献   

12.
依托新颖的表面表征技术开尔文探针力显微镜(KPFM)获悉磷酸铁锂表面势的情况,以期深入研究锂离子在磷酸铁锂表面的动力学行为。研究结果表明,磷酸铁锂薄膜在常温下的功函数为5.38 eV,并且其功函数随着外界温度的上升而呈现出逐渐下降的趋势,在80 ℃时的功函数为4.69 eV。此现象意味着高温状况下的磷酸铁锂具有较好的电子迁移能力。此外,非原位的开尔文探针检测发现不同电压平衡状态下的磷酸铁锂具有不同的表面功函数。充电至4.3 V时,磷酸铁锂功函数为4.91 eV,放电至2.5 V时,功函数稳定在5.01 eV。显然,磷酸铁锂的功函数非常敏感于表面的锂离子脱出量。研究从功函数的新角度探究磷酸铁锂表面的锂离子动力学行为,期望能够为其他储能材料的脱锂过程研究提供参考。  相似文献   

13.
Since lithium iron phosphate cathode material does not contain high-value metals other than lithium, it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials. Here, we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield. Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions. Iron is retained in the leaching residue as iron phosphate, which is easy to recycle. The effects of factors such as acid concentration, acid dosage, amount of oxidant, and reaction temperature on the leaching of lithium and iron are comprehensively explored, and the mechanism of selective leaching is clarified. This process greatly reduces the cost of processing equipment and chemicals. This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.  相似文献   

14.
马晓斌  倪华良 《当代化工》2012,(10):1059-1061
LiFePO4是一种重要的锂离子电池正极材料。综述了几种常见的LiFePO4合成方法(主要包括固相法、微波法、碳热还原法、机械力化学活化法、水热法、溶胶凝胶法、液相沉淀法、微乳液干燥法、喷雾热解法等)及其特点,主要介绍近10年来国内外在此方向的重要研究成果及进展。  相似文献   

15.
锂离子电池正极材料磷酸铁锂的研究进展   总被引:1,自引:0,他引:1  
对锂离子电池正极材料磷酸铁锂的制备方法进行了介绍。首先介绍了固相合成法的基本过程、研究改进情况以及优缺点,其次介绍了液相合成法即水热法、溶胶-凝胶法和共沉淀法的基本原理及研究进展,然后从非晶相掺杂和晶相掺杂两个方面对锂离子电池材料的性能改进研究情况进行了介绍,最后对材料的发展方向进行了展望。  相似文献   

16.
采用溶胶凝胶法合成了橄榄石型LiFePO4材料。运用XRD、SEM和激光粒度分布仪等手段对材料进行表征。研究了反应体系pH值、煅烧温度、煅烧升温速率和柠檬酸用量等工艺参数对LiFePO4粒径和粒度分布、物相组成和结构等物性的影响。得到的适宜工艺条件为:反应体系pH值为3.57,煅烧温度800℃,煅烧升温速率7℃/min,柠檬酸用量3.5∶1.0。同时分析了各因素对LiFePO4材料粒度分布的影响机制,重点讨论了反应过程机理和煅烧过程机理。  相似文献   

17.
Based on the oxidation of ferrous ions in lithium iron phosphate and reduction of trivalent cobalt ions in lithium cobaltate, an innovative combined recovery process of lithium iron phosphate and lithium cobaltate powders is proposed. The effects of leaching conditions on leaching performance are studied and the optimal leaching conditions are obtained. Under these conditions, the leaching efficiencies of lithium and cobalt ions reach up to 99.92% and 81.11%, respectively. After removing ferric ions from leachate, the cobalt and lithium ions are separately recovered from the leaching solution. The final precipitation rate of cobalt ions is up to 97.71% with the purity of cobalt oxalate as 99.94%. In addition, the precipitation rate of lithium ions is 78.54% and the purity of lithium carbonate reaches up to 99.94%. Finally, the reaction path and mechanism for the combined recovery of lithium iron phosphate–lithium cobaltate system are preliminary investigated.  相似文献   

18.
传统的无机化学品均是采用独自的矿产资源分别进行加工,生产资源与能源未能实现循环经济再利用、循环和分级利用的生产原则,全生命周期能源消耗无效率高。要实现碳达峰、碳中和,满足新产业的需要,就需要开发无机盐化工资源性耦合低碳的新技术新工艺。在钛、磷、硫资源耦合生产钛白粉与湿法磷酸盐先进工艺技术模式的基础上,以储能材料磷酸铁锂为例,提出将钛铁矿-磷灰石矿-锂灰石矿三矿耦合,按“元素经济”的绿色工艺技术路线生产储能材料磷酸铁及磷酸铁锂产品,论述了磷酸铁锂三元素上游磷化工、钛化工、锂化工面临节能减碳的挑战与耦合新技术创新的机遇及市场发展前景。  相似文献   

19.
Lithium iron phosphate (LiFePO4) nanoparticles and lithium iron phosphate/halloysite (inorganic nanotubes) (LiFePO4/INT) nanocomposites were prepared by ultrasound‐assisted synthesis in an aqueous solution of lithium hydroxide containing ammonium dihydrogen phosphate and ferrous chloride and used as cathode materials in lithium ion batteries. The performance of the cathode material was measured using cyclic voltammetry. The oxidation potential for LiFePO4 polyaniline/nanotubes/anode cell was found to be in the range of −1.12 to 1.063 V while the reduction potential for lithium iron phosphate cell was in the range of −1.03 to 1.15 V. POLYM. COMPOS., 37:1874–1880, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号