首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
主要介绍了关于高温合金表面热障涂层体系中界面失效行为的研究进展,针对热障涂层中的基体/粘结层界面、粘接层/TGO界面和TGO/陶瓷层界面,进行了高温服役过程中的退化失效及结构演变行为分析,提出了影响热障涂层界面性能的研究重点和方向。  相似文献   

2.
由于氧化钇稳定氧化锆(YSZ)陶瓷材料在作为热障涂层的使用过程中存在因抗烧结性能差、应力裂纹、涂层脱落等导致涂层失效的问题,本文主要从热障涂层的制备工艺,抗烧结性能、控制TGO的生长、抗CMAS腐蚀及YSZ面层应变容限等方面的改善方法进行论述,通过提高涂层纯度、改变粘接层及涂层成分、涂层结构及制备柱状结构YSZ陶瓷面层释放热失配应力等可有效改善涂层在使用过程中的失效问题。  相似文献   

3.
采用悬浮液等离子喷涂(SPS)分别制备8%氧化钇稳定氧化锆(8%Y_2O_3-ZrO_2,8YSZ)热障涂层和以8YSZ为陶瓷层底层,顶层为GZ(Gadolinium Zirconate)的双陶瓷层热障结构(YSZ/GZ)。在大气环境箱式电阻炉中1150℃下对两种热障涂层进行了10 h、50 h和100 h时长的等温氧化处理,通过对高温氧化前后质量和孔隙率变化分析了两种涂层的抗氧化性和烧结现象,采用扫描电子显微镜和能谱仪观察分析了涂层不同等温氧化时长下的微观组织变化和热生长氧化层(TGO)的元素构成,通过X射线衍射分析了氧化前的相的组成。结果表明:双陶瓷层热障结构具有更好的抗氧化性和高温型,主要归结于GZ晶体结构中存在稳定的弗伦克尔缺陷的氧离子。陶瓷层和粘结层界面的TGO的产生和长大仍是其失效的主要原因。TGO主要由Al和Cr的氧化物组成。烧结现象在等温氧化10 h处,最为明显。  相似文献   

4.
采用超音速火焰喷涂(HVOF)在高温合金K4169上制备了NiCoCrAlYTa黏结层,使用不同粒度的氧化铝对黏结层进行喷砂预处理制备出了不同粗糙度的黏结层,再通过大气等离子喷涂(APS)在不同粗糙度的黏结层上制备了ZrO2–7%Y2O3(7YSZ)热障涂层(TBCs)。对不同粗糙度的黏结层表面采用体视镜进行观察分析;并对不同粗糙度下制备的热障涂层的高温氧化性能、热震性能、表面硬度、结合强度等进行了测试以及对它们的变化规律进行了对比分析。此外,对热震失效后热障涂层的黏结层与陶瓷层界面进行了残余应力分析,计算了热生长层(TGO)裂纹尖端应力场强度(K)。研究结果表明:黏结层粗糙度越大,热障涂层中黏结层的氧化质量增加,黏结层与陶瓷层界面残余应力增加;当黏结层粗糙度为3.52μm时,热障涂层有最优的综合性能,其中结合强度和热震次数分别为57 MPa和52次(950℃到22℃循环)。  相似文献   

5.
热障涂层研究进展   总被引:1,自引:0,他引:1  
李学娇  张骋  张娜 《中国陶瓷》2013,(3):1-4,12
热障涂层由于具有优良的隔热、耐高温、抗氧化腐蚀以及抗磨损等性能,已应用于燃气轮机、航空发动机的高温镍基金属叶片的隔热保护。对热障涂层最新研究进展及发展趋势进行了论述,着重探讨了有关热障涂层的几种主要制备工艺,包括等离子喷涂、电子束物理气相沉积、高速火焰喷涂以及高频脉冲爆炸喷涂,对比分析了各自特点;并从制备工艺、相变、结构、抗氧化性能等方面对热障涂层的失效机制进行了分析。  相似文献   

6.
采用超音速火焰喷涂在航空发动机热端部件DZ40M合金表面制备了铝含量不同(6%、8%和12%)的Ni-Co基粘结层,再等离子喷涂YSZ(氧化钇稳定氧化锆)陶瓷面层,制得了热障涂层。通过扫描电镜、X射线衍射仪和拉曼光谱仪研究了粘结层成分及其真空热处理对热障涂层显微形貌、物相组成以及界面热生长氧化物(TGO)的影响。结果表明,3种粘结层的致密性均较高,与基材以及陶瓷层结合较好。3种喷涂态粘结层中的物相组成与原始粉末相似,随着Al含量增加,原始粉末和喷涂态粘结层中β相的含量逐渐增加。粘结层的真空热处理可以有效降低3种热障涂层在静态氧化过程中TGO的增厚速率。未经粘结层真空热处理制成的热障涂层中,TGO的增速与粘结层中Al的含量有关。粘结层真空热处理后,晶界扩散会显著影响TGO的增厚速率,TGO晶粒尺寸的增加会造成晶界数量减少,相应地会降低TGO的增厚速率。  相似文献   

7.
热障涂层作为航空发动机的关键技术,一旦在使用过程中失效将导致严重的后果。然而,热障涂层在使用过程中不可避免地会接触到钙镁铝硅酸盐(CMAS),引发涂层剥落,使高温合金直接暴露在高温燃气中,带来巨大的危险。因此,热障涂层的CMAS侵蚀及防护问题近年来得到了广泛关注。本文在介绍传统氧化钇稳定氧化锆(YSZ)涂层受CMAS侵蚀现状的基础上,明确了CMAS侵蚀YSZ的化学作用过程,阐明了YSZ涂层的失效机制,比较了不同种类CMAS的侵蚀效果,总结了目前热障涂层抵抗CMAS侵蚀的主要方法,并阐述了基于自损型防护原理开展的新型热障涂层材料的CMAS侵蚀行为研究进展,以期为未来航空发动机用热障涂层陶瓷材料的选择和CMAS防护提供有益参考。  相似文献   

8.
随着航空航天等领域热端部件表面热障/环境障涂层的服役环境越来越恶劣,对涂层的性能要求显著提高,作为目前广泛应用的Y2O3部分稳定的ZrO2(YSZ)材料,已经不能完全满足使用要求,所以开发新型兼具优异性能可用于高温环境的涂层材料日益重要。稀土盐类材料作为新型热障/环境障涂层材料,因其复杂的结构、低热导率和高热膨胀系数等优点,而被国内外学者广泛关注和研究。因此,综述了几种稀土盐类涂层材料的晶体结构、力学性能、热学性能,展望其发展前景。  相似文献   

9.
由于热障涂层体系结构的复杂和服役环境的恶劣,极易导致涂层发生界面分层、宏观断裂和剥落失效。首先利用声发射技术实时监测了热障涂层在三点弯曲载荷下的失效过程,结合微观形貌特征、声发射参数分析、K-means聚类分析识别了热障涂层损伤失效模式。然后利用Fourier变换、小波包变换等分析了4种失效模式的波形特征,其中宏观断裂或剥落失效信号无明显频带,而基底变形、表面垂直裂纹、剪切型界面裂纹、张开型界面裂纹对应的频率分布范围分别在62.5~125.0 kHz、187.5~250.0 kHz、250.0~312.5 kHz、375.0~437.5 kHz。采用机器学习的方法对原位声发射信号进行了深度处理,提取小波能量系数作为机器学习反向传播神经网络的特征向量,结合收敛曲线、混淆矩阵、受试者工作特征曲线、F1值评价了该模型优劣性,实现了对于热障涂层失效模式的判别,为热障涂层失效预测和寿命评估提供参考价值。  相似文献   

10.
热障涂层材料广泛应用于发动机热端部件的热防护,能有效提高航空发动机热端 部件的工作温度和使用寿命。目前商用的热障涂层材料为氧化钇部分稳定氧化锆,但其在服役 温度高于 1200?C 时会发生相变而失效,难以满足新一代航空发动机对热障涂层的性能要求。因 此,寻找新型热障涂层材料及其服役性能研究一直是近年来的热点。本文综述了近年来氧化钇 稳定氧化锆、钙钛矿氧化物、烧绿石氧化物以及稀土硅酸盐材料的研究进展,并展望了热障涂 层材料的未来发展趋势。  相似文献   

11.
《Ceramics International》2020,46(6):7475-7481
This paper is devoted to a comparative study on the isothermal oxidation of thick thermal barrier coating (TTBC) with and without segmented cracks produced by atmospheric plasma spray (APS) process. Accordingly, the growth of thermally grown oxide (TGO) and its effect on the degradation of the coating were investigated. Thick top coat in both segmented crack and conventional thick TBC reduced the double layered TGO growth rate slightly. The segmented crack thick TBC demonstrated longer isothermal oxidation life in comparison with that of the conventional thick TBC at 1100 °C. The dominant failure mechanism was spallation due to lateral cracking within the TGO and/or within TBC near the TGO layer, called mixed failure. Stress, and consequently strain, induced on the TTBC due to progressive TGO growth, seems to be primarily responsible for the crack initiation and propagation leading to the coating failure. Increment of elastic energy stored within the top coat due to the increasing of TGO thickness, finally causes thick thermal barrier coating failure in high temperature isothermal oxidation.  相似文献   

12.
The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating.  相似文献   

13.
A physical geometric model of the dynamic growth of thermally grown oxide (TGO) was established based on an analysis of the TGO growth of 8YSZ thermal barrier coatings during thermal cycling. Finite-element simulation was used to simulate the evolution law between the coating residual stress and thermal cycling, and the linear elasticity, creep effect, and stress accumulation in each thermal cycle were studied. The interface between the top coat (TC) and the bond coat (BC) was covered with a TGO layer that grew vertically and slowly in a layer-like manner. The stress in the TGO was distributed with a “layer” zonal gradient, and the TGO/BC boundaries were distributed uniformly with a large compressive stress, which decreased the TGO layer thickening. With the longitudinal rapid random TGO growth, the boundaries were subjected to a tensile stress, and a high tensile stress concentration area developed at the boundaries. The internal stress consisted of an alternating and mixed distribution of concentrated compressive and tensile stresses. The concentration area of the maximum equivalent stress was distributed in the one-layer TGO near the TC/TGO interface. When a microcrack formed at the TGO/BC boundaries, the crack was subjected to a tensile stress of different size, with a higher tensile stress at both ends, which facilitated crack expansion. Thus, the 8YSZ thermal barrier coating was prone to crack formation and expansion at the TGO/BC boundaries and in the TGO layer near the TC/TGO boundaries.  相似文献   

14.
《Ceramics International》2022,48(4):5327-5337
A three-dimensional cylindrical numerical simulation physical and geometric model of TBCs sinusoidal surface was established based on the ultrasonic C-scan results of 8YSZ coating after thermal cycling. The stress distribution and evolution law of the TGO/BC interface and sample center and edge affected by TGO growth were simulated by the finite-element method. The results show that the stress at the TGO/BC interfaces changes from compressive stress to tensile stress with the increase of the number of thermal cycles. The center of the interface is distributed with large radial, circumferential and axial tensile stresses, while the edge of the sample is affected by thermal mismatch, which shows that shear stresses are alternately distributed in the XZ direction. The tensile stress at the center and the shear stress at the edge are the main reasons for the failure of the core and edge flakes of the thermal barrier coating. The linear elasticity, creep effect, fatigue effect and stress accumulation effect of each layer of TBCs in each thermal cycle period are fully considered by the model, which reveals the reason why the core and edges of the thermal barrier coating are most likely to form cracks.  相似文献   

15.
《Ceramics International》2021,47(24):34361-34379
This paper aimed to design and optimize the structure of a thick thermal barrier coating by adding graded layers to achieve a balance between high thermal insulation capacity and durability. To this end, conventional TBC, conventional TTBC, and functionally graded TTBCs were deposited on the superalloy substrate by air plasma spraying. To determine the quality of the bond strength of the coatings, the bonding strength was measured. The durability of coatings was evaluated by isothermal oxidation and thermal shock tests. Then, at a temperature of 1000 °C, the thermal insulation capacity of the coatings was carried out. The microstructure of the coatings was characterized by a scanning electron microscope. The results showed that the thickness of the TGO layer formed on the bond coat in the conventional TBC and TTBC under the oxidation test at 1000 °C after 150 h was 2.79 and 2.11 μm, respectively, whereas, in the functionally graded TTBC samples, no continuous TGO layer was observed as a result of internal oxidation. The functionally graded TTBC presented higher durability than conventional TTBC due to improved bonding strength, thermal shock resistance, and the lack of a TGO layer at the bond/top coat interface. Also, the thermal insulation capacity of the functionally graded TTBC (with 1000 μm thickness of YSZ coating) was better than TTBC.  相似文献   

16.
Q.M. Yu  Q. He 《Ceramics International》2018,44(3):3371-3380
Residual stress has a significant influence on the crack nucleation and propagation in thermal barrier coatings (TBC) system. In this work, the residual stress in the air plasma spraying (APS) TBC system during cooling process was numerically studied, and the influence of the material properties of each layer on the residual stress was investigated. The morphologies of the interface were described by a piecewise cosine function, and the amplitude for each segment gradually increases. The elasticity, plasticity and creep of top coat (TC), thermally grown oxide (TGO) layer and bond coat (BC) were considered and the elasticity and creep of the substrate layer were taken into account. The material properties of all layers vary with temperature. The results show that the material properties have complex influence on the residual stress during cooling. The effect of the material properties of TC and BC on the residual stress at the interface is relatively large, and that of TGO and substrate is relatively small. These results provide important insight into the failure mechanism of air plasma spraying thermal barrier coatings, and important guidance for the optimization of thermal barrier coating interfaces.  相似文献   

17.
Effect of thermally grown oxide (TGO) thickness on thermal shock resistance of thermal barrier coatings (TBCs) and also their behavior under a cyclic loading (including aging at maximum temperature) was evaluated experimentally. In order to form different thicknesses of TGO, coated samples experience isothermal loading at 1070?°C for various periods of times. Heat-treated samples were heated to 1000?°C and cooled down rapidly in water from the substrate side using a mechanical fixture. The life of samples was investigated as a function of TGO thickness. Furthermore, by performing an experiment the simultaneous effect of the TGO growth and thermal expansion mismatch– on the failure of thermal barrier coatings was evaluated. The results demonstrated that the presence of TGO with a thickness of 2–3?µm has a positive effect on the resistance against thermal shock.  相似文献   

18.
The residual stresses could cause extensive damage to thermal barrier coatings and even failure. A finite element model of thermal barrier coating system had been designed to simulate the residual stresses and then to analyze the crack nucleation behavior. The distribution of normal and tangential stress components along top coat (TC) / thermally grown oxide (TGO) and TGO / bond coat (BC) interfaces are shown in this work. It is found that the maximum tensile stress along TC/TGO interface occurs in the peak region during heating-up, and that along TGO/BC interface is also located in the peak region, but during the process of cooling-down. A parameter correlating the normal stress component with corresponding tangential one was used to evaluate the interfacial cracks, indicating that cracks will initiate at the peak-off region of TC/TGO interface in the heating-up phase, but for TGO/BC interface, cracks will initiate at the peak position in the cooling-down phase.  相似文献   

19.
Gradient thermal cycling test was performed on atmospheric plasma‐sprayed (APS) thermal barrier coatings (TBCs) with different thermally grown oxide (TGO) thicknesses. The TBCs with a thickness of TGO from 1.3 μm to 7.7 μm were prepared by controlling isothermal oxidation time of cold‐sprayed MCrAlY bond coat. The gradient thermal cycling test was performed at a peak surface temperature of 1150°C with 150°C difference across 250 μm thick YSZ with a duration of 240 s for each cycle. Results indicate that the thermal cyclic lifetime of APS TBCs is significantly influenced by TGO thickness. When initial TGO thickness increases from 1.3 μm to 7.7 μm, the thermal cyclic lifetime decreases following a power functions by a factor of about 20. It was revealed that there exists a critical TGO thickness over which the thermal cyclic lifetime is reduced more significantly with the increase in TGO thickness. Moreover, two typical failure modes were observed. The failure mode changes from the cracking within APS YSZ at a TGO thickness less than the critical value to through YSZ/TGO interface at TGO thickness range higher than the critical value.  相似文献   

20.
According to the experimental research results of the thermally grown oxide (TGO) layered growth during the pre-oxidation process of 8 wt.% yttria-stabilized zirconia thermal barrier coating (TBC), a two-dimensional sinusoidal TC/bonding coat (BC) curve interface model of the longitudinal section of TBCs based on finite element simulation was constructed; the thickness and composition of the TGO layer relative to the TC/BC curve interfacial stress distribution and its evolution during the thermal cycling process were studied. The results show that when the TGO layer uses α-Al2O3 as the main oxide (black TGO), the thicker the black TGO layer, the more uniform the stress distribution of the TC/BC interface. When the TGO layer is dominated by spinel-structured Co and Cr oxides (gray TGO), the stress “band” of the TC/BC interface is destroyed; it shows the alternating phenomenon of tensile stress zone and compressive stress zone, and after the rapid random growth of TGO, the concentrated tensile stress increased by a large jump. Affected by the thickness of the prefabricated black TGO layer, there is a limit peak in the thickness of the black TGO layer, the normal stress at the TC/BC boundary is minimized, and the magnitude of the stress change is also minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号